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ABSTRACT

One of the major advantages of Optical Flow PIV (Particle Image Velocimetry) algorithms over Cross-Correlation

PIV is their scalability leading to potentially very high computational speeds. This is confirmed in this study using

different GPUs (Graphics Processor Unit) and different image sizes. The other advantage is the possibility of obtaining

dense velocity fields of up to one vector per pixel. It is well known that particle seeding plays a crucial role in the

results of standard particle image velocimetry based on cross-correlation algorithms. Its influence on the quality of

the optical flow algorithm is not as well established. In this article the influence of particle concentration is quantified

by introducing a criterion taking into account the proportion of “active” pixels in a snapshot. It is shown that it

is possible to optimize particle concentration to maximize the percentage of active pixels, leading to better spatial

resolution, down to one vector per pixel. The principle is validated on a vortex-free flow and applied to the complex

3D flow downstream a backward-facing step.

1. Introduction

Particle image velocimetry (PIV) is a non-intrusive technique which allows the measurement of
the two components (2C) of a velocity field in a plane (2D) defined by a sheet of laser light pass-
ing through a flow of fluid seeded with reflective particles (?). The basic principle consists of
calculating the movement of particles between two successive snapshots using, in standard PIV
post-processing, an FFT (Fast Fourier Transform) cross-correlation (CC) algorithm. CC-PIV is the
standard algorithm currently used in most experiments, although it is very time-consuming, com-
putationally demanding, and limited in terms of spatial resolution or real-time measurements. To
optimize the quality of the velocity fields, it is important to choose the right experimental parame-
ters adapted to the CC algorithms, such as the time between two snapshots, leading to a maximum
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displacement of a few particles inside the interrogation windows (IW), which is a key element for
the spatial resolution of the PIV field (Kähler et al., 2012). However, the optimal parameters for a
CC algorithm may not be the same as those for other types of algorithms, such as optical flow (OF).
Indeed, OF-PIV offers a different approach. Coming from the machine vision community, optical
flow can be understood as the apparent speeds of changing intensity patterns in a scene (Gibson,
1950). The general idea of estimating displacements from intensity changes is based on the as-
sumption that intensity levels remain constant between successive images and that displacements
are assumed to be small, of the order of 1 pixel.

However, determining displacement vectors from intensity variations is an under-constrained
problem. This problem was solved mainly in two ways. Either a fineness constraint is imposed
on the system (Horn-Schunck) (Horn & Schunck, 1981) which renders a global solution, or the dis-
placements in the vicinity of a kernel centered on the pixels are considered very close to each other
(Lukas - Kanade) (Lucas & Kanade, 1981). Later, the Lukas-Kanade OF algorithm was modified,
adding it to an iterative scheme (Folki) (Besnerais & Champagnat, 2005) and then adapted to per-
form PIV calculations (Champagnat et al., 2011). One of the considerable advantages of FOLKI PIV
is the ability to parallelize the algorithm to run efficiently on GPU (Plyer et al., 2016) and has even
been optimized to run in real time (Gautier & Aider, 2013b) at the point to be used as a sensor in
closed-loop flow control experiments (Gautier & Aider, 2013a, 2015). In addition to the significant
gain in calculation time, OF-PIV also leads to dense velocity fields, up to 1 vector per pixel, giving
access to smaller scales in the turbulent spectrum (Giannopoulos et al., 2022).

Over the last few years, the entire acquisition chain (Laser, camera, computer, algorithm) for Real-
Time PIV measurement has been optimized. It leads to a high-resolution, high-frequency real-time
optical flow PIV (RT-OFPIV) system. The ability to run RT-OFPIV has made possible almost un-
limited observations, analysis, or recordings of large-scale instantaneous quantities derived from
PIV fields. This also leads to new experimental challenges. For example, various studies and opti-
mizations have been carried out to enhance the experimental conditions, the selection of algorithm
parameters or the selection of appropriate equipment.

In the present study, we focus on the influence of seeding, and more precisely of particle concentra-
tion, on the spatial resolution of instantaneous PIV fields measured in real time. In the first part we
will present the experimental setup and the performance of RT-OFPIV for both online and offline
computations. We will then present a parametric study on a uniform and vortex-free flow to show
the influence of seeding on the quality of the velocity fields. Finally, we will show on massively
separated flows (Backward-Facing Step flow) how the improvement of the seeding allows a better
resolution of the different coherent structures.
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2. Experimental setup

2.1. Hydrodynamic channel

Experiments have been carried out in a hydrodynamic channel in which the flow is driven by
gravity using a constant level water tank to ensure a pressure differential of ∆P = 0.3 bar (Fig. 1a).
The maximum free-stream velocity U∞ = 22 cm.s−1 leads to a maximum Reynolds number based

on the step height h of Reh =
U∞h

ν
≈ 3300 for a water temperature of 21◦C (ν being the kinematic

viscosity).

The flow is stabilized by divergent and convergent sections separated by honeycombs (Fig. 1b),
leading to a turbulence intensity lower than 1 %. A NACA 0020 profile is used to smoothly start
a Blasius boundary layer over the flat plate, upstream of the BFS (Fig. 2). The test section is 80 cm

long with a rectangular cross-section w = 15 cm wide and H = 7 cm high. The height of the step

h is 1.5 cm leading to a vertical expansion ratio of Ay =
H

H + h
= 0.82.

2.2. Acquisition system

To perform the PIV measurements, the water was seeded with light-reflecting polyamide mi-
croparticles 20 µm in diameter. The flow was ignited by a laser sheet generated by a laser beam
(Coherent continuous Nd:Yag laser with a wavelength of 532 nm) passing through a cylindrical
Powell lens and operating at an output power of 2 Watts. Two positions for the horizontal laser
sheets were used: one upstream of the BFS, in the freestream vortex-free region and the other just
downstream of the BFS, near the bottom wall (Fig. 2).

To record snapshot images of the flow, a Mikrotron 21CXP12 camera was used. It can record
21 Mpx images with an acquisition frequency of up to 240 Hz.

A dedicated and personalized computer was designed and built to optimize its performance for
real-time acquisition. The system is based on an AMD Ryzen Threadripper PRO 3955WX proces-
sor with 16 cores operating at a frequency of 3.90 GHz for 128 GB of RAM. Two powerful latest
generation GPUs (RTX4090) are supported on a custom open chassis that allows better access and
easier connection/removal of the new GPUs (Fig. 3).

3. Real-Time Optical Flow PIV

The optical flow algorithm is based on the assumption of intensity conservation between images
as defined in Eq. 1):
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(a)

(b)

Figure 1. a) Sketch of the hydrodynamic channel. The flow is driven by gravity and stabilized using honeycombs
upstream of the test section Cambonie (2012). b) 3D Sketch of test section which contains a flat plate allowing the

growth of a boundary layer upstream of a BFS Gautier (2014).

∇I(x, y, t) = 0 (1)

where I(x, y, t) is the intensity measured by each pixel over time t.

By using this hypothesis and a restrictive condition it is possible to estimate the movement of the
flow between two successive snapshots. The constraint imposed by the Lucas & Kanade (1981)
method is to assume that neighboring pixels will behave in a similar way. This is the reason why
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Figure 2. 3D Sketch of the BFS. The profiled plate, allowing the development of a boundary layer upstream of the
BFS, is installed inside the rectangular test section shown in Fig. 1b. The optical flow measurements were carried out

in two horizontal planes, one in the free-stream region upstream of the BFS and the other downstream of the BFS,
relatively close to the lower wall (y = 0.3h).

(a) (b)

Figure 3. a) Workstation used to process PIV images in Real-Time (illustrated on the two screens). b) Close up of the
workstation showing the two GPUs used for the OF computation.

FOLKI (Besnerais & Champagnat (2005)) can be considered as a compromise between pure optical
flow methods and window-based methods. Indeed, it uses interrogation windows in the form of
kernels centered on pixels, which defines one of the important parameters of the algorithm called
the kernel radius. It defines the size of the areas where the intensity gradients will be compared.
This process will be applied to each pixel, leading to a resolution of one vector per pixel.

Optical flow codes can be limited to estimate small displacements, of the order of 1 pixel. However,
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this problem is solved in FOLKI by the implementation of Gaussian pyramid schemes, which make
it possible to reduce the size of the image, therefore to subsample large displacements. This defines
another important parameter of the algorithm called the pyramid sublevels. At each new pyramid
level the number of pixels in each direction is halved (Fig. 4). The last important parameter of
FOLKI is the number of Gauss-Newton iterations that the code must perform to give a solution.
Our implementation has an additional preprocessing step before calculating the velocity fields
which consists of intensity normalization using a pixel-centered kernel across the entire image.

The whole process of velocity field calculation consist in six main steps:

1 Normalization of intensity of the image.

2 Image sub-sampling with Gaussian pyramids.

3 Estimation of the displacements at the kernel scale.

4 Projection of the velocity fields up-sampling the image size.

5 Iteration through the user defined times.

6 Velocity fields estimation.

The whole process, from the two snapshots to the velocity fields computation, is presented in
Fig. 4.

Even if there are general rules for choosing the right parameters (for example the number of it-
erations in experimental conditions rarely exceeds 4), they are strongly influenced by the charac-
teristics of the images. For example, large displacements (more than 20 pixels between two snap-
shots) can be processed if the images are large enough, allowing subsampling by pyramid scheme.
Nevertheless, we found that the choice of kernel radius can strongly depend not only on particle
displacements, as previously thought, but also on the seeding density. Indeed, the OF principle
is based on the calculation of the spatial intensity gradient in the images. If there are too many
areas in the images without information, i.e. without intensity gradient, a larger kernel will be
necessary. Ideally, for an OF algorithm, each pixel should provide information through a variation
in intensity from one image to another. This is directly related to the concentration of particles in
the flow. This point will be explained later in the discussion.

4. Performance Benchmark

To evaluate the performance of RT-OFPIV, the right parameter is the number of PIV fields calcu-
lated per second FPIV , either online (Real-Time) or offline (post-processing). It is highly dependent
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Figure 4. Workflow diagram showing the main processing steps used to compute velocity fields using Optical Flow.
The Pyramid sub-sampling allows for a better estimation of all the scales present in the flow. It plays a critical role for

flows with large velocity differences, like in separated flows exhibiting large free-stream velocities and slow
velocities in the recirculation bubble.

on the software and hardware used for the calculations, i.e. it gives an estimate which depends on
many factors such as CPU/GPU type, image size, choice of algorithm parameters and of course the
streaming chain from the camera to the computer for online RT measurements. However, different
configurations have been tested which give general trends in OFPIV performances.

First, the offline performance of OF calculations was evaluated on the workstation, with three dif-
ferent Nvidia GPUs: one RTX3090 and two different RTX4070 Ti. Additionally, a laptop equipped
with an Intel Core i9-12950HX processor with 16 cores 2.30 GHz, 32 GB RAM and an NVIDIA RTX
3080Ti, was evaluated to compare with a different computer architecture. For this benchmark, syn-
thetic images were used with a size ranging from 126×126 pixels up to 2560×2560 pixels. For all
calculations the OF parameters were identical with a kernel radius KR = 10 pixels, 3 iterations, a
normalization radius of 4 pixels and 2 pyramid sublevels.

Fig. 5 shows the offline benchmark result. As can be seen, the performance of the algorithm
strongly depends on the size of the image. We see that it is possible to calculate velocity fields
from standard 4 Mp images at a frequency between 60 and 90 Hz. 0.5 Mp image pairs can be
processed at 400 Hz, while 6.5 Mp image pairs can be processed at 40-70 Hz depending on the
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Figure 5. a) Evolution of the number of velocity fields computed per second offline, depending on the size of the
images (in Mpixels) for four different hardware configurations. b) Zoom-in showing the number of velocity fields

computed for larger images. In both cases, it shows that the performances are highly dependent of the hardware and
GPUs used for the computation.

computer/GPU used. Interestingly, we found that performance is higher for smaller images when
using a laptop. This can be explained by an optimized architecture optimizing communication
between the CPU and GPU. Additionally, it should be noted that there may be performance differ-
ences between two identical GPUs running on the same workstation. The reason for this difference
in performance between the two RTX4070 Ti is not yet understood, but it illustrates the strong de-
pendence on the hardware used for the calculations.

The online benchmark was carried out using the Mikrotron 21CXP camera connected to the work-
station via a CoaxPress card. The acquisitions are carried out on the same assembly with the same
parameters. Variations in image size are made between successive acquisitions. The fields are
processed in real time and processing times are recorded to compare the impact of image size on
calculation times. Image sizes ranged from 1 to 21 Mp, with a dynamic range of 8 bits. The same
parameters for the OF were used, as in the offline benchmark. Fig. 6 presents the evolution of the
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(a)

(b)

Figure 6. a) Online performance benchmark showing the Real-Time computation frequencies as a function of the
image size. b) Same plot but limited to the 10 to 21 Mp images, to help seeing the variations of computing frequencies

for large pictures.

real-time processing frequency as a function of the size of the images. The same trends are obtained
as for offline processing. We can see that pairs of 21 Mp images can be processed in real time at 20
Hz (Fig. 6b), while standard 4 Mp images can be processed at 90 Hz. Pairs of 2 Mp images can be
processed at frequencies close to 200 Hz (Fig. 6a). Surprisingly, the older GPU (RTX3090) is more
efficient than the newer RTX4070 Ti GPUs for large images. The latest GPUs perform a little better
for smaller images (2 Mp), also with a difference between the two identical GPUs.

5. Influence of particle seeding on the quality of the velocity fields

Given the nature of the OF algorithm, it is important to study in depth the impact of particle
seeding on the quality of the results. This question is even more relevant when performing RT-
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OFPIV measurements for hours, looking for low-frequency signatures in the fluctuation of scalar
quantities derived from instantaneous velocity fields. Indeed, the question of seeding becomes
crucial due to the sedimentation of particles over time. To avoid loss of information in the velocity
fields over time, it becomes necessary to add particles into the closed-loop hydrodynamic channel.
Unfortunately, a quantitative criterion is missing to know how many particles should be injected
and when.

(a) (b)

(c) (d)

Figure 7. Sub-sample of the raw images during the change in particle concentration. a) C0. b) 2C0. c) 3C0. d) 4C0

The first observation is that the standard criteria used to adjust the particle density in CC-PIV
(particles per window or particles per pixel) are not adapted to OF-PIV. The appropriate criteria
for OF-PIV should be related to the number of pixels containing information relating to intensity vari-
ations. This notion is introduced because OF works optimally when fed with a highly textured
image, that is, when each pixel sees an intensity variation that can be linked to movement. Unfor-
tunately, we can see in standard PIV snapshots (Fig. 7a) that many pixels are black and therefore do
not provide any information to the OF algorithm. It becomes necessary to define quantitative cri-
teria to optimize particle seeding in order to have the best possible texture in the images, possibly
leading to better instantaneous velocity fields.

The first step consisted of increasing the concentration of particles by successive injection of 5 g

of particles inside the water tank. The first injection (C0 = 5g) is the standard concentration used
for PIV measurements. Then, 5 g of particles were injected every 20 min while image pairs were
captured every 5 s. The measurements were carried out in a horizontal plane, in the freestream and
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vortex-free region, upstream of the BFS (Fig. 2). We can see in Fig. 7 the evolution of small squares
of 256 pixels taken in the center of the raw snapshots to increase the concentration, showing a
reduction in black pixels.

(a) (b)

Figure 8. Evolution of percentage of active pixels for increasing concentration of particles. Each red vertical line
indicate the time of a new injection of particles in the water tunnel, leading to an increase of the particle

concentration.a) In terms of active pixels per image size. b) As a function of the amount of active pixels after the first
particle injection C0

In order to quantify the number of pixels containing information, we first removed the natural
noise from the camera sensor, as the camera used for these acquisitions has a base noise level of 4
levels of gray when in a dynamic range of 8 bits. Next, we calculated the number of pixels Nact that
actually detected intensity changes above the noise level. The ratio Ract = Nact/Npix of the number
of active pixels (i.e. with information) to the total number of pixels gives the percentage of camera
pixels actually containing useful information for the OF.

Fig. 8a shows the evolution of Ract as a function of time. Each red line corresponds to a new injec-
tion of particles, leading to an increase in the concentration of particles seen by the camera. The
first observation is that for the initial concentration, only 6% of the sensor pixels contain informa-
tion. This is clearly insufficient for an OF algorithm. We see that after 5 injections, leading to a
total particle mass of 25g, the ratio of active pixels increases to reach almost Ract = 80%. Fig. 8b
shows the same evolution but normalized by its value for the initial concentration Ract(C0) and as
a function of the mass of injected particles.

This strong evolution in the proportion of active pixels should impact the quality of the resulting
velocity fields calculated with the OF algorithm. Fig. 9 shows the effect of particle injection on the
resulting velocity fields. We can see that the velocity field becomes denser and more homogeneous
with each injection. For the maximum concentration, the velocity field becomes much smoother
and uniform.

As stated previously, the kernel radius is a key parameter for OF. When dealing with suboptimal
conditions for the image texture, a larger radius helps resolve the velocity estimation in a pair of
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images on each pixel. But this has the side effect of losing smaller structures, because it smoothes
the flow field. Using the appropriate concentration, one should obtain valuable information close
to pixel resolution.

(a) (b)

(c) (d)

Figure 9. Impact of the number of active pixels on the velocity fields at different times. a) C0 b) 2 C0 c) 3 C0 d) 4 C0.

6. Influence of the concentration of particle on the spatial resolution in the velocity fields

For the next two subsections, the camera background noise was removed, as in the previous sec-
tion, to improve the observation of the impact of particle seeding.

6.1. Freestream flow

In order to evaluate the impact of seeding in terms of quality of the resulting velocity fields, images
in the freestream zone of the tunnel, upstream of the BFS, were taken. The objective is to calculate
the velocity field of a homogeneous flow, in a region where there are no complex velocity gradients
or any other 3D phenomena that might be difficult to estimate. These are the same images that
were taken to characterize the quantity of active pixels in the images.

Fig. 10a presents a 2D plot of the evolution of the instantaneous velocity profile in the direction of
the current, extracted from a line of pixels in the center of the image, for decreasing concentration
of particles. We see that a minimum concentration is necessary to homogenize the speed profiles
and obtain a good estimate of the speed. This is confirmed by Fig. 10b which shows the evolution
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of the relative error made on the estimation of the speed in the direction of the flow. The error is
minimized for the largest particle concentration.

Further analysis, taking into account the OF parameters, is still needed. Nevertheless, it is clear
that for such a uniform flow, increasing particle seeding in the water tunnel leads to a better veloc-
ity field resolution and a reduction in noise and errors.

(a)

(b)

Figure 10. a) Longitudinal velocity profile at the center of the image. b) relative error of the velocity profile at the
image center

6.2. Flow downstream a BFS

The same measurements were carried out downstream of a BFS in a horizontal plane, close to the
lower wall (Fig. 2), in order to estimate the influence of the seeding concentration on the quality
of the velocity fields. The objective is to compare the spatial resolution of the velocity fields for a
flow containing many eddies of different scales. The measurements were carried out at Reynolds

Reh =
h× U∞

ν
= 2040, which corresponds to a regime close to turbulence, with strong velocity

fluctuations at different scales. Two configurations are compared: one with a low particle concen-
tration (3 g), the other with a higher concentration (25 g).

An instantaneous streamwise velocity field obtained with low concentration is shown in Fig. 11)a.
It can be seen that if no smoothing is applied, some information is lost leading to holes or errors
in the velocity field. It is very different when the concentration increases: there are no holes in the
field which appears smooth and has fine details.
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Figure 11. 2D plot of the instantaneous streamwise velocity field obtained with a low (3 g) concentration (a) and for a
large (25 g) concentration (b). The qualitative difference is obvious if no smoothing is applied on the velocity fields.

With a larger concentration, the instantaneous velocity field shows no hole and better definition of smaller structures.

This observation is confirmed if we plot the streamwise velocity profile along the center-line of
the instantaneous velocity fields for the low concentration and the high concentration (Fig. 12).
When the concentration is too low, many pixels do not contain information which leads to many
zero pixels. On the other hand, it is clear that the resolution of the velocity field is improved with
higher concentration. This leads to smoother velocity profiles that clearly contain valuable velocity
fluctuations, without any Gaussian blur or interpolation.

It is important to note that both cases were treated with the same OF parameters: Normalization
radius of 3 pixels, Kernel radius of 6 pixels, 4 Sublevels of the pyramid and 4 iterations.
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Figure 12. Streamwise profile of the streamwise component measured along the center-line of the velocity field, with
a low concentration of particles (a) and a large concentration of particles (b). One can see that the profile is both

smoother, without holes or sharp unphysical variations when the seeding is increased.

7. Conclusion

The objectives of the present study were to evaluate both the computational speed and spatial
resolution of an optical flow algorithm. More precisely, we were interested in the influence of
hardware on the calculation speed and the influence of particle seeding on the spatial resolution.

The first step was to run the OF algorithm with different GPUs on a given workstation and on a
laptop with an internal GPU. The calculation speed was measured for increasing image sizes, from
0.01 Mp to 6.5 Mp. The results confirmed the high efficiency of the OF algorithm. It is possible
to calculate offline (no acquisition, use of synthetic images) velocity fields from 6.5 Mp to 60 Hz,
while velocity fields from 1 Mp can be calculated at nearly 300 Hz. Surprisingly, the performance
obtained with a laptop was as good as that of a workstation with a dedicated GPU, which is also
good news because it shows that it is possible to perform RT-OFPIV measurements even with a
relatively cheap setup.

The second step consisted of carrying out the same tests, but on-line, i.e. the calculation speed in real
time, during the acquisition of pairs of images using a Mikrotron 21CXP camera streaming images
to the workstation through a CoaxPress card. The tests were also carried out with 3 different GPUs.
Results were good with all 3 GPUs. It was possible to calculate PIV fields on 21 Mp images at 20
Hz and at 100 Hz with 4 Mp images. Interestingly, the older GPU (RTX3090) was faster than the
latest RTX4070 Ti when computing 21Mp frames, suggesting that the number of CUDA cores is the
more important parameter (10496 for the RTX3090 vs 7680 for the RTX4070 Ti). It is also interesting
to note that two identical GPUs do not lead to the same computing speed.

Finally, we also studied the relevance of particle seeding density on the quality and resolution of
OFPIV. For this, we introduced the notion of active pixels as a proxy for image quality. The objective
was to search for a particle seeding criterion different from the criteria used for CC-PIV, adapted to
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OF. We could show that it is indeed possible to increase the number of actually useful active pixels
in a given pair of images. Using standard seeding, well suited to CC-PIV, less than 10% of the
camera sensor was used. Increasing the particle concentration led to more than 80% active pixels.

Finally, it was shown that thanks to this optimization, it was possible to increase the spatial reso-
lution leading to better velocity fields. The measurements downstream of a BFS flow were used
as a reference to evaluate the quality of the instantaneous velocity fields. 2D velocity fields ob-
tained with lower concentration exhibit holes and errors that disappear if the particle concentra-
tion increases. Additionally, fine details associated with small structures can be observed, showing
that with the appropriate parameters, OF-PIV measurements can effectively lead to dense veloc-
ity fields, with 1 vector per pixel, leading to an increase in spatial resolution. More systematic
experiments are needed to confirm this result. For example, the small scales of turbulent flows
can indeed be resolved in RT-OFPIV measurements, but this study demonstrates that this should
indeed be possible.
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