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ABSTRACT

Non-invasive flow measurement techniques, such as particle tracking velocimetry, resolve 3D velocity fields by pair-

ing tracer particle positions in successive time steps. These trajectories are crucial for evaluating physical quantities

like vorticity, shear stress, pressure, and coherent structures. Traditional approaches deterministically reconstruct par-

ticle positions and extract particle tracks using tracking algorithms. However, reliable track estimation is challenging

due to measurement noise caused by high particle density, particle image overlap, and falsely reconstructed 3D parti-

cle positions. To overcome this challenge, probabilistic approaches quantify the epistemic uncertainty in particle po-

sitions, typically using a Gaussian probability distribution. However, the standard deterministic tracking algorithms

relying on nearest-neighbor search do not directly extend to the probabilistic setting. Moreover, such algorithms do

not necessarily find globally consistent solutions robust to reconstruction errors. This paper aims to develop a glob-

ally consistent nearest-neighborhood algorithm that robustly extracts stochastic particle tracks from the reconstructed

Gaussian particle distributions in all frames. Our tracking algorithm relies on the unbalanced optimal transport the-

ory in the metric space of Gaussian measures. Specifically, we optimize a binary transport plan for efficiently moving

the Gaussian distributions of reconstructed particle positions between time frames. We achieve this by computing the

partial Wasserstein distance in the metric space of Gaussian measures. Our tracking algorithm is robust to position

reconstruction errors since it automatically detects the number of particles that should be matched through hyperpa-

rameter optimization. Notably, our tracking algorithm also readily applies to the standard deterministic PTV case.

Finally, we validate our method using an in vitro flow experiment using a 3D-printed cerebral aneurysm.

1. Introduction

Particle tracking velocimetry (PTV) is a fluid velocity field measurement technique that works by
tracking the tracer particles (Maas et al., 1993; Malik et al., 1993). Multiple cameras record the
three-dimensional motion of tracer particles in two-dimensional images. Then one uses a regres-
sion approach to build forward measurement models that map the physical space particles to the
images (Maas et al., 1993; Malik et al., 1993). The two-dimensional projected particle images can
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be mapped back to the physical space using triangulation Maas et al. (1993); Wieneke (2012). Once
physical space particle positions are reconstructed at each recorded frame, one uses tracking algo-
rithms to obtain Lagrangian tracks Malik et al. (1993). Finally, the Eulerian velocity and pressure
fields can be estimated from these Lagrangian tracks (Neeteson et al., 2016; Zhang et al., 2020;
Virant & Dracos, 1997; Hagemeier et al., 2015).

Two crucial steps in PTV are the reconstruction of physical space particle positions from recorded
images and the extraction of Lagrangian tracks from the reconstructed particle positions. One of
the standard reconstruction methods is Iterative Particle Reconstruction (Wieneke, 2012; Jahn et
al., 2021). To extract Lagrangian tracks, one uses tracking algorithms to identify the most prob-
able tracks. The classic approach is the nearest neighbor searching (NNS) algorithm Malik et al.
(1993) that finds the nearest particle to an individual particle or predictor location. Several sub-
sequent improvements to the NNS algorithm have been developed. Dracos (1996) proposed to
penalize large acceleration. Baek & Lee (1996) used iterative estimation of match probability and
no-match probability. Okamoto et al. (1995) developed a spring model technique to match particle
clusters. The method in Guezennec et al. (1994) finds the most likely particle tracks by minimiz-
ing a penalty function associated with each possible track. The objective is to use path coherence,
such as smoothness of position and velocity to identify particle tracks. Li et al. (2008) used a re-
gression method to predict future particle positions and the developed method is more robust to
noisy input particle positions. Mikheev & Zubtsov (2008) added a term that accounts for particle
diameters for enhancing pairwise matching. Cardwell et al. (2011) introduced a multi-parametric
particle-pairing algorithm. Cierpka et al. (2013) uses a multi-frame high-order approach to pair
particles. Instead of finishing reconstruction and tracking in two steps, the state-of-the-art method,
shake-the-box Schanz et al. (2016), combines these two steps together to identify the Lagrangian
tracks in time progressively.

Despite the great progress in the field, there still remain some open challenges. First, all cur-
rent methods are deterministic and cannot account for uncertainties in PTV. In the reconstruction
step, the reconstructed physical space particles are not fully faithful due to camera measurement
noise, overlapping particles, and reconstruction algorithm errors. These errors subsequently prop-
agate to the particle tracking phase. Deterministic approaches produce a single Lagrangian track,
which is incapable of quantifying the errors. Second, all the tracking algorithms use NNS-type
approaches that only utilize local displacement information to match particle pairs. This local
matching strategy is not necessarily globally consistent since one particle might be identified as the
nearest neighbor particle for multiple particles or predictors. Hence, further processing is required
to identify the unique particle tracks. Last, it is still challenging for the current tracking algorithms
to address the reconstruction errors, and robustly identify Lagrangian tracks from the potentially
erroneous position reconstruction results. Robustly identifying the stochastic Lagrangian tracks
against reconstruction errors is crucial to reconstruct the stochastic Eulerian velocity field using
Physics-informed reconstruction algorithms (Alberts & Bilionis, 2023; Hao & Bilionis, 2023).
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The objective of this paper is to develop a globally consistent nearest-neighborhood algorithm that
robustly extracts stochastic particle tracks from the reconstructed Gaussian particle distributions
in all frames. We use the unbalanced optimal transport (UOT) theory. Specifically, we solve the
partial Wasserstein distance (PWD) (Chapel et al., 2020) formulation of UOT. Our method is the
first PTV tracking algorithm to match reconstructed Gaussian position estimation and propagate
uncertainties from stochastic particle positions to stochastic Lagrangian tracks. We achieve this by
matching the Gaussian position estimation in the metric space of Gaussian measures, also known
as the Wasserstein space.

The structure of this paper is as follows. In section 2 we review the Bayesian volumetric recon-
struction method. In section 3, we develop our tracking algorithm. In section 4, we validate the
algorithm with a cerebral aneurysm flow experimental example. In section 5, we conclude the
paper.

2. Background on Bayesian volumetric reconstruction in PTV

We briefly review the Bayesian volumetric reconstruction (BVR) method developed in Hans et al.
(n.d.). We consider U as a 3D flow domain and r = (x, y, z) ∈ U as a position in the domain. BVR
formulates a Bayesian inference problem to estimate the posterior distribution of the 3D physical
space particle positions given observed camera images. Two ingredients are needed. First, a prior
distribution of 3D particle positions p(r1:N) that quantifies our belief of particle positions before
observing the images. This is the users’ choice and can be just a uniform distribution over U . The
second ingredient is a likelihood function pλ(y1:M |r1:N) defined by the parameter λ, which links
the 3D particle positions to the observed images. Each ym is the observed mth grayscale camera
image.

Then we apply the Bayes’ theorem to get the posterior distribution of particle positions:

pλ(r1:N |y1:M) ∝ pλ(y1:M |r1:N)p(r1:N).

Jointly finding the posterior distribution and the optimal likelihood parameter λ analytically is
intractable. So BVR uses variational inference (Jordan et al., 1999) and the training technique in
variational auto-encoder (Kingma & Welling, 2013) to approximate the posterior distribution while
finding the optimal parameter.

This is achieved by maximizing the evidence lower bound (ELBO) over the likelihood parameter
λ and a family of parameterized distribution qψ(r1:N) to approximate the posterior pr(r1:N |y1:M).
Mathematically, the ELBO is defined as

ELBO (ψ, λ|y1:M) =

∫
log

{
pλ (y1:M |r1:N) p(r1:N)

qψ(r1:N)

}
qψ(r1:N) dr1:N .
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To improve the computational efficiency, BVR chooses the diagonal multivariate normal distribu-
tion for each particle position as the guide:

qϕ(r1:N) =
N∏
n=1

N
(
rn|µn, diag

(
σ2
n

))
,

where µn and σn are the three-dimensional mean and standard deviation vectors for the nth par-
ticle, respectively. To further improve the reconstruction accuracy, BVR adds a penalty term to
the ELBO. This significantly helps to escape local minimums in the optimization. The parame-
ters λ defined in the forward camera model and measurement function are also optimized while
computing the posterior distribution. The reader can find the details in Hans et al. (n.d.).

3. Methodology

In this section, we use UOT to develop a stochastic particle tracking algorithm that can identify
and extract stochastic particle tracks from the posterior particle distributions produced by BVR.

We work in the metric space of probability measures (P, d). A point in this metric space is denoted
by π and a collection of probability measures from this metric space is denoted by {πi}i∈I . In the
BVR case, P is the space of Gaussian measures, a point π is a Gaussian measure and the metric
d can be the Wasserstein 2- distance (Takatsu, 2011). The BVR method reconstructs a diagonal
covariance matrix for each particle and the Wasserstein 2- distance is

W2

(
N (m1, diag(σ

2
1)),N (m2, diag(σ

2
2))

)2
= ∥m1 −m2∥22 + ∥σ1 − σ2∥22 .

Equipped with the notations above, we assume there are N number of reconstructed particle posi-
tion estimates Πk =

(
πk1 , · · · , πkN

)
at time frame k, andM number of estimates Πk+1 =

(
πk+1
1 , · · · , πk+1

M

)
at time frame k + 1. It should be emphasized that N is not necessarily equal to M .

Our objective is to design an optimal transport plan in the space of probability measures P. First,
we write down the source mass:

µ(π) =
N∑
i

δπk
i
(π) , (1)

and the target mass:

ν(π) =
M∑
i

δπk+1
i

(π) . (2)

A graphic illustration of transporting Gaussian distributions from the source to the target is shown
in Fig. 1.
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Figure 1. An illustration of unbalanced optimal transport of stochastic particle position reconstructions.

min
γ

⟨γ, c⟩F

s.t.
M∑
j=1

γij ≤ 1, for i = 1, · · · , N,

N∑
i=1

γij ≤ 1, for j = 1, · · · ,M,

N∑
i=1

M∑
j=1

γij = Np ∈ N+ ≤ min {N,M} ,

γij ≥ 0,

(3)

Since the source mass is not necessarily equal to the target mass, i.e., N ̸= M , this problem is
unbalanced in nature. We use the partial Wasserstein distance (PWD) formulation, shown in Eqs.
3, to find the optimal transport plan. This formation constrains the total transport number Np.
The first constraint states that the mass transported from the source should not be greater than
the mass of the source. The second constraint states that the mass received by the target should
not be greater than the mass of the target. The fourth binary constraint guarantees no mass split.
In the third constraint, the positive integer Np is the total mass to be transported. This is the
hyperparameter that should be carefully chosen or optimized. In PTV particle matching, due to
missing and overlapped particles, fluid flowing in and out of the observation volume and particle
position reconstruction errors, the value ofNp is usually less than min {N,M}. The numberN−Np

denotes our guess of the number of particles that do not have a matched particle pair in frame
k + 1 due to position reconstruction errors or particles flowing out of the flow domain. Similarly,
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the number M − Np denotes our guess of the number of particles that do not have a matched
particle pair in frame k.

4. Experimental example: cerebral aneurysm

We demonstrate our tracking algorithm using the experimental cerebral aneurysm dataset. Brindise
et al. (2019) performed in-vitro experiments, where particle images were captured using four high-
speed cameras with one center camera of 0◦ angle from the geometry plane and the other three of
about 30◦ angles. 1216 × 1224 pixels time-resolved images were recorded at 2000 Hz. Lagrangian
tracks were identified using the shake-the-box (Schanz et al., 2016) algorithm.

For our purpose, we first use the BVR algorithm (Hans et al., n.d.) to reconstruct the posterior dis-
tributions of particle positions at each frame using recorded images from the four cameras. Then,
we identify stochastic Lagrangian tracks using our PWD formulation of unbalanced optimal trans-
port. We showcase the reconstruction results in three plots. In Fig. 2, we plot the reconstructed
particle position means using BVR in the left column, and the reconstructed track position and
velocity means using PWD in the right column. Notice that the velocity means are plotted at the
location of the position means. The identified tracks are visually reasonable compared to the re-
construted particle positions. In Fig. 3, we plot the total standard deviations, i.e., the squared root
of the sum of the variances of x, y, and z coordinates. All standard deviations are plotted at the
location of the position means. In the left column, we plot the result for the interior particles whose
distances to the interior wall surface are greater than 1mm. The right column shows the result for
the particles near the interior wall surface. We use pink color to emphasize high uncertainty. As
the color in the right column is slightly higher than the left column color, the uncertainty of the
reconstructed particle positions near the wall exhibits a slightly higher uncertainty. Usually, the
reconstruction result shows more error and uncertainty in the regions that are closer to the wall,
and our reconstruction result agrees with this fact. Fig. 4 plots the uncertainty of the velocities
of the reconstructed Lagrangian tracks. As before, the left and right columns plot the result for
the tracks that are greater and within 1mm distance to the interior wall surface, respectively. The
velocity standard deviations are plotted at the location of the track means. We can observe a sim-
ilar result that the velocity uncertainty near the wall is slightly higher than the uncertainty in the
interior region.

5. Conclusions

In this paper, we develop a stochastic particle tracking method based on unbalanced optimal trans-
port theory. The method optimizes a transport plan to move the reconstructed particles (repre-
sented by Gaussian distributions) between two frames in the most efficient manner. Since the
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Figure 2. Cerebral aneurysm flow experimental data (Brindise et al., 2019). Left column: reconstructed particle
position means across all frames using BVR. Right column: reconstructed track position and velocity means using

PWD.
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Figure 3. Cerebral aneurysm flow experimental data (Brindise et al., 2019). Left column: total standard deviations of
the reconstructed particle positions across all frames using BVR in the interior region (particle distances to the wall

are greater than 1 mm). Right column: total standard deviations near the wall (less than 1mm).
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Figure 4. Cerebral aneurysm flow experimental data (Brindise et al., 2019). Left column: total standard deviations of
the reconstructed track velocities using PWD in the interior region (track distances to the wall are greater than 1 mm).

Right column: total standard deviations near the wall (less than 1mm).
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numbers of reconstructed particles between two frames are rarely the same, we employ an unbal-
anced optimal transport formulation. Finally, we demonstrate and validate the developed stochas-
tic particle tracking method using a cerebral aneurysm flow experimental example. In addition to
showcase the reconstructed position and velocity means, we highlight the ability of our method
to quantify the reconstruction uncertainty. In particular, we plot the velocity uncertainties in the
interior region and near the interior wall surface region, respectively. The reconstruction result
shows a slightly greater velocity uncertainty of the particles near the wall.

In summary, the developed method shows a convincing and promising capability to improve par-
ticle tracking accuracy and robustness. The method also adds an additional advantage of quanti-
fying reconstructed position and velocity uncertainties over the conventional method.
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