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ABSTRACT

The Proper Orthogonal Decomposition (POD) is one of the most popular methods for discovering patterns from data

in fluid mechanics. When the data is available on a uniform grid, such as in cross-correlation-based particle image ve-

locimetry, the POD is equivalent to a Singular Value Decomposition (SVD) of the matrix containing the measurement.

When the data is scattered, as in particle tracking velocimetry, the POD computation first requires interpolation onto

a grid. Such interpolation degrades spatial resolution and limits the benefits of PTV over correlation-based methods.

In this work, we propose a method to compute the POD from scattered data that circumvents the need for interpo-

lation. The method uses physics-constrained Radial Basis Function (RBFs) regression to compute inner products in

space and time. We demonstrate that this method is more accurate than the traditional interpolation or binning-based

approaches. Since the method does not require the definition of a mesh and produces results that are analytic and

mesh-independent, we refer to our method as meshless POD.

1. Introduction

Studying turbulent flows is challenging because of their chaotic behaviour and the large range
of length and time scales involved. The “dynamical system perspective” introduced in the 90s
(Holmes et al., 2012) describes turbulent flows as dynamical systems evolving on manifolds of
finite dimensions, identified by a few leading “coherent structures”. This promoted the interest
in identifying (and objectively defining, see Jiménez (2018)) coherent structures whose dynam-
ics could be predicted via low dimensional models. The fluid dynamics community has tradi-
tionally pursued this search via linear methods for dimensionality reduction (Mendez, 2023), al-
though nonlinear methods from pattern identification in machine learning are gaining popularity
(Farzamnik et al., 2023; Mendez, 2023).

Linear methods break the dataset as a linear combination of elementary contributions referred
to as modes. The most ubiquitous approach for this decomposition is the Proper Orthogonal De-
composition (POD) introduced by Lumley (1967) and widely popularized by the seminal works
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of Sirovich (1987, 1989, 1991). Within the image velocimetry community, this decomposition has
been widely used also as a statistical filter, for example for outlier removal (Raiola et al., 2015) or
image pre-processing (Mendez et al., 2017), for gap filling (Saini et al., 2016) and for resolution
enhancement (Cortina-Fernández et al., 2021; Tirelli et al., 2023a). Moreover, many variants and
hybrid formulations of the POD have been introduced, such as Gappy POD (Everson et al., 1997),
Spectral POD (Sieber et al., 2016) or Multiscale POD (Mendez et al., 2019) to mention a few.

These decompositions can be easily implemented as matrix factorizations when the data is avail-
able on a regular and fixed grid, as in traditional cross-correlation-based image velocimetry. In
the case of the POD, it is easy to show that this corresponds to a Singular Value Decomposition
(Dawson, 2023). However, the implementation is considerably more cumbersome when the data
is scattered.

Scattered data is produced by Particle Tracking Velocimetry (PTV), which has been gaining promi-
nence in recent years, especially for 3D velocimetry, thanks to advanced tracking algorithms (Schanz
et al., 2016; Tan et al., 2020). Tracking velocimetry allows for measuring local velocity without
the modulation effects produced by cross-correlation, thus offering much higher resolutions. A
common approach to leverage 3D PTV while maintaining most of the post-processing algorithms
developed for structured data is to resort to data interpolation methods, potentially enhanced by
physics-based constraints (Schneiders & Scarano, 2016; Gesemann et al., 2016). Nevertheless, all
interpolation methods lose at least some of the resolution gains achieved by PTV.

This work departs from traditional post-processing approaches by introducing a novel, meshless
(analytical) formulation of POD for PTV that requires neither interpolation nor binning. The pro-
posed method uses the constrained Radial Basis function regression introduced in (Sperotto et al.,
2022) to compute inner products in space and time. We show that this provides higher accuracy
than the usual interpolation-based approach and provides an analytical (mesh-independent) rep-
resentation of the spatial structures. The theoretical background of the methodology is detailed
in Section 2, while the validation is presented in Section 3 on two different synthetic datasets: the
wake of a fluidic pinball and the turbulent channel flow.

2. Methodology

The proposed methodology follows the classic snapshot-based POD by Sirovich (1991). The cor-
nerstone of our method is that all inner products are formulated in an RBF formulation that re-
quires no grid and thus no interpolation. The data can be scattered both in space and time. The
final result is a linear decomposition of the data in the form:

u(x, ti) =
rc∑
r=1

σrϕr(x)ψr(t) , (1)
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where σr are scalars defining the amplitude of each contribution, ϕr(x) and ψr(t) are the spatial
and the temporal structures of the POD modes.

The meshless POD procedure is outlined in the steps below.

Step 1: Analytical snapshot representation with RBF

Starting from scattered data available for the different time realizations, an analytical approxima-
tion of the field for each time instant is obtained as a linear combination of a set of basis functions.
This approximation is denoted as:

ũ(x, ti) =
Nb∑
q=1

wq(ti)γq(x), (2)

where Nb is the number of basis functions used in the approximation, γq is the qth regression basis,
and w are the corresponding weights. The vector x contains the coordinates on which the data are
evaluated at the ith time instant ti among the total Nt time instances. With no loss of generality,
the basis functions employed in this work are thin-plate radial basis functions (RBF). These only
require the definition of the collocation and have no shape factor parameters. We use the vector
coordinates xp as collocation. Therefore, the current approach has no hyper-parameters to tune,
needs no user input and only requires extra memory storage for the weights. Future work will
explore more advanced formulations and the use of physics constraints as in Sperotto et al. (2022).

Step 2: Temporal correlation matrix

The temporal correlation matrix K ∈ RNt×Nt is defined as the matrix whose elements are the inner
products in space, denoted as ⟨·, ·⟩s, between all the snapshots:

K =


⟨u1, u1⟩s ⟨u1, u2⟩s . . . ⟨u1, uNt⟩s
⟨u2, u1⟩s ⟨u2, u2⟩s . . . ⟨u2, uNt⟩s

...
... . . . ...

⟨uNt, u1⟩s ⟨uNt, u2⟩s . . . ⟨uNt, uNt⟩s

 (3)

In the original formulation (Lumley, 1967) of the POD, the inner product in space or time were
defined in terms of correlation of square-integrable real-valued functions, that is:

Kij =
1

∥ Ω ∥

∫
Ω

ũ(x, ti) ũ(x, tj) dΩ , (4)

with Ω the spatial domain considered. If Ω is partitioned in uniform Ns elements of area (or
volume) ∆Ω, indexed by k ∈ [0, Ns − 1] a straightforward approximation approximation of Eq. (4)
reads as
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Figure 1. Comparison of the energy distribution for the fluidic pinball. The reference POD is represented by the black
curves with circle markers, while the red curve with star markers depicts the meshless approach, and the blue curve

with square markers represents the binned method. On the x-axis is denoted the index of the mode.

Kij ≈
1

Ns∆Ω

∑
k

ũ(xk, ti) ũ(xk, tj) ∆Ω =
1

Ns

uT
j ui , (5)

where ui,uj ∈ RNs are the vectors collecting the data sampled at time steps i and j and corre-
sponding to each of the Ns portions of the spatial domain. In this setting, the correlation matrix
can be computed using a simple matrix multiplication as K = UTU. Eq. (5) is an approximation
of (4) using the mid-point rule (Griffiths & Smith, 2006), that is assuming a piecewise-constant
approximation of the velocity field.

POD algorithms for gridded data use Eq. (5). Interpolation-based formulations for PTV seek to
bring the scattered data onto a uniform grid so that Eq. (5) can still be used. We here propose to
use the original version in Eq. (4), leveraging the regression of Eq. (2) in step 1 and a quadrature
method that interrogates the integrand on specific quadrature points. With no loss of generality,
we here use Gauss-Legendre quadrature because of its excellent trade-off between accuracy and
computational costs. It is worth stressing that quadrature methods using analytic approximations
of the integrand are much more accurate than the mid-point rule implied in Eq. (5).

Step 3: Computing Temporal Structures

The eigenvectors of the temporal correlation matrix are the temporal structure of the POD modes.
Therefore, given the temporal correlation matrix, these reads

K = ΨΣ2ΨT , (6)

where the matrix Ψ ∈ Rnt×rc collects the eigenvectors along its columns and Σ is a diagonal matrix
whose elements σi represent the mode amplitudes (cf. Eq. 2). This step is identical to the classic
snapshot POD for grid data.



21st LISBON Laser Symposium 2024

Figure 2. Comparison of the distribution of the rth temporal mode ψr for the fluidic pinball. The reference POD is
represented by the black curves with circle markers, while the red curve with star markers depicts the meshless

approach, and the blue curve with square markers represents the binned one. On the x-axis is denoted the
corresponding time instant. Only the first 20 time instants are displayed.

Step 4: Computing Spatial Structures

The rth spatial structure ϕr is the result of projecting the dataset ũ(x, t) onto the temporal structure
ψr. This project requires an inner product in time. The same discussion in Step 2 now applies to
the inner product in the time domain, which reads

ϕr(x) =
1

σr
⟨ũ(x, t), ψi(t)⟩ =

1

σrT

∫
t

ũ(x, t) ψr(t) dt ≈ 1

σrNt

Nt∑
k=1

ũ(x, tk)ψr(tk) (7)

assuming that the time domain is t ∈ [0, T ]. Here both the temporal structures and the regression
of the snapshots are available on a discrete set of times t ∈ RNt . Although advanced quadratures
could also be used in Eq. (7) together with an analytic regression in time, the gain in accuracy was
considered not worth the additional computational cost. Therefore, in this work, this projection is
carried out via mid-point approximation in time.

We stress that Eq. (7) holds for any set of points x. Hence Eq. (7) enables in principle super-
resolution of the POD modes. In this work, we compute it over a uniform grid for plotting pur-
poses and compare it with interpolation-based approaches.
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Binned POD

Meshless POD

Reference POD

Figure 3. Comparison of the spatial modes ϕi associated to the steamwise velocity component u for the fluidic
pinball. The reference POD is represented in the third row, while the binned and the meshless approaches are

displayed in the first and the second row, respectively. Only the first three modes are pictured.

3. Validation

3.1. Fluidic pinball

The first test case is the wake of a fluidic pinball, a configuration of three cylinders with diameter
D located at the vertices of an equilateral triangle. Direct Numerical Simulation (DNS) data from
Deng et al. (2020) is used for this case. The DNS data consists of an unstructured grid with 3536
points within the domain x/D ∈ [1, 11] and y/D ∈ [−2, 2] (with x, y being the stream-wise and
cross-wise directions, respectively). We arbitrarily define a scaling factor of 32 pixels per diameter,
which produces a particle density of Nppp = 0.086 (particles per pixel). To define the ground truth
for the POD computation, we interpolate the data on a fine grid with ∆x = D/16 and compute
the POD with the traditional matrix factorization approach. We consider the resulting modes as
“reference POD".

We then consider a subset with particle concentration of Nppp = 0.0086 (i.e. 10 times lower) to
simulate PTV measurements. This is used to test the meshless POD computation, and the results
are referred to as “meshless POD". The mapping onto a regular grid is carried out using a moving
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Figure 4. Comparison of the root mean square error δRMS , normalized with respect to the freestream velocity U∞, of
the reconstruction at different ranks for the case of the fluidic pinball. The red curve with star markers depicts the

meshless approach, while the blue curve with square markers represents the binned method.

δRMS/rms(ψrefi)

ψ1 ψ2 ψ3 ψ4 ψ5 ψ6

Binned POD 0.0604 0.0612 0.0896 0.1307 0.0938 0.1921
Meshless POD 0.0600 0.0605 0.0576 0.0589 0.0271 0.0462

Table 1. Root mean square error δRMS evaluated for both binned and meshless approaches for the ith temporal
mode, divided by the standard deviation of its corresponding DNS mode ψrefi .

average with windows of 32 pixels. This simulates a cross-correlation-based interrogation or the
binning of the PTV data onto a regular grid, from which the classic matrix-factorization approach
for the POD is employed. In what follows, we refer to the results of this approach on the binned
data as “binned POD".

Since the dataset is statistically stationary, focus is placed on the decomposition of the fluctuating
component of the velocity field. To ensure a fair comparison across the methodologies, the Ensem-
ble PTV high-resolution mean is subtracted from the entire fields from all the datasets as explained
in Tirelli et al. (2023b). The results of the decomposition are shown in Figs. 1, 2 and 3. Fig. 1 shows
the distribution of normalized amplitudes for all the methodologies across the modes. This plot
reveals a first discrepancy among the two methodologies when compared to the DNS: the curve
of the meshless approach is closer to the reference while the PIV seems to lose some of the energy
related to the higher modes. This discrepancy arises from the moving average process produced
by the cross-correlation, which tends to filter out the smallest scales.

Fig. 2 shows the first six temporal structures ψi normalized with the square root of the number of
samplesNt. Notably, discrepancies become larger as higher-order modes are considered. This kind
of comparison is limited to the leading modes: since less energetic modes tend to differ in the two
approaches due to the different resolutions, the ordering between modes can significantly differ
and produce largely different decompositions. However, the illustrated modes suggest that the
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δRMS/rms(ϕrefi)

ϕ1 ϕ2 ϕ3

Binned POD 0.1466 0.1483 0.1993
Meshless POD 0.0665 0.0708 0.0669

Table 2. Root mean square error δRMS evaluated for both binned and meshless approaches for the ith spatial mode,
divided by the rms of its corresponding DNS mode ϕrefi .

Figure 5. Comparison of the distribution of the ith temporal mode ψi for the turbulent channel flow. The reference
POD is represented by the black curves with circle markers, while the red curve with star markers depicts the

meshless approach, and the blue curve with square markers represents the binned method. On the x-axis is denoted
the corresponding time instant, for a better visualization only the first 20 are displayed.

meshless approach closely follows the reference from the DNS. The relative RMSE in the temporal
structures, computed with respect to the reference modes from DNS, is shown in Tab. 1.

The first 3 spatial modes ϕi associated with the stream-wise velocity component U are analysed
in Fig. 3. Looking at the contours in Fig. 3, the PIV modes seem more attenuated if compared
to the ones computed with the meshless approach. Table 2 collects the relative RMSE δRMS for
the first three modes with respect to the reference modes from DNS, proving that the proposed
meshless approach better evaluated for the same three spatial modes normalized with the RMS of
the corresponding DNS modes.

3.2. Turbulent Channel Flow

The second test case is the DNS of a turbulent channel flow, which is accessible through the Johns
Hopkins Turbulence Database (http://turbulence.pha.jhu.edu/). This test case poses greater
challenges due to the more chaotic nature of the flow behaviour and the larger range of turbulent
length scales involved. The reader is referred to Li et al. (2008) for details on the simulations.
The data is interpolated on a uniform grid with a spacing of 4 pixels that spans a domain of
x/h ∈ [0, 0.5] and y/h ∈ [0, 0.5], where h represents the half-channel- heights. The particle den-

http://turbulence.pha.jhu.edu/


21st LISBON Laser Symposium 2024

Binned
POD

Meshless
POD

Reference
POD

Figure 6. Comparison of the spatial modes ϕi associated to the steamwise velocity component u for the turbulent
channel flow. The reference POD is represented in the third row, while the binned and the meshless approaches are

displayed in the first and the second row, respectively. Only the first three modes are pictured.

sity Nppp is 0.01 (4096 particles). The same steps of the previous test case are employed to establish
the ground truth and the synthetic PTV and PIV with an interrogation window of 32 pixels.

The validation performed for this test case follows the same procedure as described in Sec.3.1.
Temporal and spatial modes are illustrated in Fig. 5 and Fig. 6, respectively. Building upon the in-
sights from the previous section, we can now focus our comparison solely on the first three modes
since the increased complexity of this test case tends to introduce order mixing among the subse-
quent modes. However, for both temporal and spatial cases, the figures confirm what is already
seen in the previous test case. The RMSE values reported in Tabs. 3-4 confirm quantitatively this
difference.

The velocity field reconstructions are presented in Fig. 7. Notably, the meshless POD exhibits
higher accuracy compared to the traditional PIV approach, as evidenced by the lower error. The
RMSE curve, normalised with the bulk velocity Ub shows a minimum for the meshless POD, with
a value of 0.0243, compared to 0.0294 for the traditional PIV. This improvement in accuracy further
demonstrates the effectiveness of the meshless POD methodology in capturing and reconstructing
complex flow patterns with higher precision.
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Figure 7. Comparison of the RMSE on the reconstruction with different ranks for the turbulent channel flow. The red
curve with star markers depicts the meshless approach, and the blue curve with square markers represents the

binned method.

δRMS/rms(ψrefi)

ψ1 ψ2 ψ3

Binned POD 0.0354 0.0904 0.1835
Meshless POD 0.0250 0.0762 0.1726

Table 3. Root mean square error δRMS evaluated for both binned and meshless approaches for the ith temporal
mode, divided by the standard deviation of its corresponding DNS mode ψrefi .

4. Conclusions

We propose a novel approach to compute the POD of scattered data produced via PTV, avoid-
ing the need for interpolation onto a structured fixed grid. The approach uses the RBF regression
and advanced quadrature to compute inner products in space and time and provides an analytic
(mesh-independent) representation of the POD modes. The approach avoids the modulation ef-
fects associated with mapping PTV measurements onto a Cartesian grid. Moreover, the quadrature
methods enabled by the RBF regression allow for more accurate computation of the temporal cor-
relation matrix and, hence, the temporal structures of the POD modes. We show that the method
allows recovering scales filtered out by binning onto a regular grid. The method can be readily
applied to variants of the POD, such as SPOD or mPOD. Besides these extensions, ongoing work

δRMS/rms(ϕrefi)

ϕ1 ϕ2 ϕ3

Binned POD 0.0750 0.1458 0.1936
Meshless POD 0.0293 0.0768 0.1086

Table 4. Root mean square error δRMS evaluated for both binned and meshless approaches for the ith spatial mode,
divided by the standard deviation of its corresponding DNS mode ϕrefi .
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includes the test on experimental test cases (2D and 3D), while future work will seek to include
more advanced and memory-efficient RBF regression methods.
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