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ABSTRACT

We introduce a novel approach to improving the resolution of Particle Image Velocimetry (PIV) measurements. The 

method merges information from different non-time resolved snapshots exploiting similarity of flow regions in dif-

ferent time instants. The main hypothesis is that the identification of similar flow structures at different time instants 

is feasible if a sufficiently large ensemble of statistically-independent snapshots is available. Merging individual vec-

tors from different snapshots with similar flow organisation allows an artificial increase of the available information. 

This paves the way to refining of the interrogation region, i.e. increasing spatial resolution. The similarity can be 

enforced on a local scale, i.e. morphologically-similar regions are sought only among subdomains corresponding to 

the same flow region. The identification of locally-similar snapshots is implemented with an unsupervised K-nearest 

neighbours search in the space of significant flow features. Such features are identified with Proper Orthogonal De-

composition (POD) in subdomains of the original low resolution data. The refined bin size will depend on the number 

of “sufficiently close” snapshots: the more neighbours are identified, the higher is the “virtual” particle image den-

sity available, and consequently the smaller is the bin size.The statistical dispersion of the velocity vectors within 

the bin is then exploited in the estimation of the uncertainty. The optimal number of neighbours is the one corre-

sponding to the minimum uncertainty. The method is tested and validated against datasets with a progressively 

increasing level of complexity: two virtual experiments based on direct simulations of the wake of a fluidic pinball 

and a turbulent channel flow; experimental data collected in a turbulent boundary layer. For further details and 

more extensive comparison against the state of art the reader is referred to the pre-print of the full article available at 

https://arxiv.org/abs/2205.02766.

1. Introduction

The characterisation of turbulent flows poses an exceptional challenge for measurement tech-
niques. The spatial and temporal scales involved in turbulence dynamics span a range whose
extent increases with the Reynolds number. Particle Image Velocimetry (PIV) stands as a powerful
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tool for this task as it provides a spatial (and temporal, if sufficiently fast hardware is available)
description of the turbulent flow structures. PIV provides useful information that can be exploited
for diagnostics, as well as for validation of models and numerical simulations, among others.

The range of observable scales in PIV measurements depends on mean particle spacing that can
be achieved on the images with a reasonable particle image density (normally of the order of 0.01-
0.1 particles per pixels) and on hardware limitations. Adrian (1997) defines the ratio between the
largest and the smallest measurable scales as Dynamic Spatial Range (DSR). The largest one can
be increased by employing larger camera sensors, and/or increasing the field of view by reducing
the optical magnification. On the other hand, the smallest one depends on the capability of the
particles to sample the flow field, i.e. on the particle concentration.

In turbulent flows, the ratio between the large scales and the Kolmogorov spatial scale broad-
ens with Re3/4 (Pope, 2000), thus pushing towards developing strategies to increase the DSR
of PIV. This has led to the development of high-accuracy high-spatial-resolution PIV processing
techniques to reduce the size of the smallest measurable scale, including cross-correlation-based
multi-step image deformation methods (Scarano, 2001) with weighting windows (Nogueira et al.,
1999; Astarita, 2007), adaptive-resolution techniques (Di Florio et al., 2002; Theunissen et al., 2006;
Astarita, 2009; Novara et al., 2012), or methods exploiting time coherence in time-resolved mea-
surements (Hain & Kähler, 2007; Sciacchitano et al., 2012; Cierpka et al., 2013; Lynch & Scarano,
2013; Schanz et al., 2016; Beresh, 2021). Ultimately, the mean particle spacing on the images sets
a Nyquist limit for spatial sampling, which is difficult to overcome (or even approach) if time
resolution is not available.

It is though common practice in PIV experiments to capture large sequences of samples, most of-
ten statistically-independent from each other. This opens up the possibility to improve the spatial
resolution and the measurement accuracy by employing statistical information. Remarkable ex-
amples include ensemble-correlation, also called single-pixel correlation (Westerweel et al., 2004;
Scharnowski et al., 2012; Avallone et al., 2015), and ensemble-particle-averaging (Cowen & Moni-
smith, 1997; Kähler et al., 2012; Agüera et al., 2016), often referred to as Ensemble Particle Tracking
Velocimetry (EPTV). EPTV obtains dense clouds of vectors by superposition of instantaneous re-
alisations. Bin averaging of such distributions delivers local probability distribution functions
(PDF), from which high-resolution statistical moments can be inferred. Once the number of par-
ticles needed for acceptable convergence of the PDF is fixed, increasing the number of snapshots
allows to reduce the bin size, thus achieving higher spatial resolution. On the downside, such
improvement is obtained at expense of giving up instantaneous information.

The recent advances in data-driven and machine-learning algorithms open the way to the devel-
opment of resolution-enhancement methods based on the analysis of the statistical distribution of
the available samples. Optical flow estimators based on deep learning techniques (Cai et al., 2019;
Lagemann et al., 2021) have shown promising results, although their robustness and generalizabil-
ity are still under investigation. Recently, the majority of successful super-resolution algorithms
are based on Generative Adversarial Networks (GANs, Goodfellow et al., 2014), as Z. Deng et al.



20th LISBON Laser Symposium 2022

(2019), that achieve an increase in spatial resolution of up to 8 times with super-resolution GANs
(Ledig et al., 2017). Güemes et al. (2022) recently introduced a new concept of Randomly Seeded
super-resolution GANs (RaSeedGAN) that achieves similar resolution enhancement and does not
need a paired low-high resolution dataset for training as it exploits directly the sparse particle
measurements as a high-resolution target. The main drawback of neural-network-based methods
is that they require experienced user for training, and the uncertainty quantification is still difficult.

In this work we propose a novel methodology that merges information from different snapshots,
and directly embeds uncertainty quantification in the process. The measurement domain is split in
subdomains in order to search, for each snapshot, the closest neighbours of each subdomain and to
blend their corresponding information. This process can be considered as a local ensemble particle
averaging performed on each region, but only among snapshots which are identified as neighbours
in the statistical distribution. The K-nearest neighbour search in a reduced-dimensionality space,
obtained by performing a POD (Proper Orthogonal Decomposition) analysis in each subdomain
separately. The statistical dispersion among the particles identified in the nearest neighbours, and
used for averaging, is exploited to provide an estimation of the measurement uncertainty. The
details of the proposed method are discussed in Sec. 2, where all the steps are highlighted and
their theoretical background is explained. In order to analyze the algorithm performance, in Sec. 3
the algorithm is validated with two different datasets with increasing complexity, the flow around
the fluidic pinball and the flow in a turbulent channel. In Sec. 4 the proposed methodology is also
tested on an experimental dataset.

2. Methodology

Figure 1 sketches the flowchart of the proposed algorithm for high-resolution field reconstruction.
The method builds upon two hypotheses:

• the identification of similar subdomains is feasible if a sufficiently large ensemble of velocity
fields is available;

• the particles randomly sample the flow velocities in statistically-independent snapshots. This
provides randomised sampling of flow structures which are assessed to be similar, even if
occurring at different time instants in a fixed location.

The similarity between realisations in the same local flow region is assessed in a low-order fea-
ture space obtained by performing a POD analysis on each subdomain separately, and taking into
account the most energetic local POD modes. In the remainder of the paper we refer to this pro-
cess as “local POD”. The K-nearest neighbour (KNN) algorithm is employed as tool to highlights
the “nearest” candidates in the feature space described by POD. For these reasons, the method is
referred to as KNN-PTV.

The steps of the method are outlined in the following.
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Figure 1. Flowchart of KNN-PTV algorithm.

Step 1: PTV analysis of original images

PTV analysis on individual fields provides scattered vectors which are later used to feed KNN-
PTV. Super-resolution PTV (Keane et al., 1995) provides robust particle matching for PTV on dense
images.

Step 2: Building reference binned distribution

Velocity fields for feature identification are built either with standard PIV algorithms or from the
PTV data from Step 1 with traditional methods (interpolation, spatial averaging, etc.). In this work,
we use a weighted average, as described in the following..

In this process, we select the bin size for the weighted average to be sufficiently large in order to
minimize empty spots. Assuming that the binning is a simple moving-average operation, in order
to obtain Np particles per spot it should be set a bin size (assumed square) such that:

bref =

√
Np

Nppp

, (1)

where Nppp is the particle density, expressed in particles per pixel, and bref is the bin size of the
reference binned fields. In our implementation, Np is set equal 10. The velocity corresponding to
each bin u(x, y) is computed as the weighted average of the velocities of the particles falling in it,
upi

. The weight coefficients ci are set as a function of the distance di of the ith particle from the bin
centre:
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Step 3: Local Proper Orthogonal Decomposition

The similarity between different snapshots is enforced at a local level. The entire domain is split
into subdomains, each containing Nv vectors. Regarding the shape of the subdomains there are no
restrictions, so, without leading generality, we employ squared subdomains with size comparable
to an interrogation window of a standard cross-correlation analysis, to mimic the PIV interrogation
process also in terms of size. In order to provide a sufficiently large number of vectors, the bins in
Step 1 are located with high overlap. Throughout this work, we adopted a grid distance of 4 pixels,
and subdomains of 40 × 40 pixels. To reduce the dimension of the search space and to guarantee
robustness to noise, the similarity between subdomains in different snapshots is assessed in low-
order coordinates. To this purpose, POD is performed on each subdomain over the ensemble
of realisations. Only the the first r temporal modes are employed, corresponding to the most
energetic flow features. Each subdomain, or window, is treated as an independent realisation
and all the time samples for each subdomain are employed to build a snapshot matrix Uw, of
size Nt × (NvNc), with Nt being the total number of snapshots, and Nc the number of velocity
components. A Singular Value Decomposition leads to:

Uw = ΨwΣwΦ
T
w. (3)

The matrices Ψw and Φw represent the temporal and spatial modes, while Σw collects the singular
values. It must be remarked that the operation in Eq. 3 is performed on the fluctuating velocity
fields after subtracting the average of ensemble PTV velocity fields at bref . This is necessary to
avoid that the KNN search is strongly biased by the average flow field, that is coincident with the
first mode. For each specific subdomain the features for KNN search are built by Θw = ΨwΣw,
truncated at rank r, which is set here as the number of modes collecting 90% of energy. This
rule of thumb is in qualitative agreement with the elbow criterion for the cases studied in this
work. The KNN algorithm searches the closest neighbours in the dataset according to its features
θwi

= ψwi
σwi

, corresponding to the POD temporal coefficients at the ith time instant. The process
is repeated for each subdomain of the snapshot.

Step 4: Optimal-K computation

A dense clouds of vectors for each snapshots is obtained by merging vectors from the K similar
instantaneous realisations within each subdomain. This operation is equivalent to increase locally
the particle image density by a factor K. The bin size can thus be reduced accounting to this
artificial increase of Nppp, leading to:
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bHR =

√
Np

NpppK
. (4)

In our implementation Np is still fixed to 10 (following classical rules of thumb from PIV theory).

The size of the bin depend on the selected value of K. Low K values lead to moderate bin size
reduction (i.e. increase of spatial resolution); on the other hand, high K values implies to include
more neighbours, thus increasing the risk of merging snapshots with lower similarity in the pro-
cess. The minimisation of the dispersion of the velocity values within each bin represents the
criterion for the selection of K. We discuss it in the following step.

Step 5: Velocity field reconstruction and uncertainty estimation

The velocity for each bin is evaluated as a weighted average of the contributions of all vectors
falling in the bin for the K neighbours. The difference from Step 2, is that here vectors belonging
to different snapshots are used and weighted taking into account the distance di of the vector to
the bin centre and the distance between the neighbours in the feature space dfi .
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The coefficient α is set empirically equal to 4 to give more relevance to the spatial distance with
respect to the distance in the feature space. It must be remarked that in Eq. 5 the upi represent the
original velocity vectors, mean flow included.

Interestingly enough, in analogy to the particle disparity method proposed by Sciacchitano et al.
(2013), the statistical dispersion of the vectors in Eq. 5 can be exploited as an indicator of uncer-
tainty. In our case, the disparity vectors are set as the difference between the value assigned by
Eq. 5 and the velocity vector used for its evaluation. The instantaneous uncertainty δ̂ is defined as
the weighted standard deviation of the disparity vectors:

δ̂ =

√√√√√√√√√√
Np∑
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ci
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−

Np∑
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, (6)

where M is the number of nonzero weights. The expanded uncertainty U is related to δ̂ according
to the definition given in Coleman & Steele (2018):

U = t δ̂, (7)
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where the factor t is a coverage factor that comes from the tabulation of T-Student distribution,
employed to approximate the δ̂ distribution. The role of expanded uncertainty is to associate a
level of confidence to the estimation, or in other words, bounds that within a certain probability
containing the true value.

During Step 4 of the process the uncertainty minimisation is performed to select an optimal K for
each subdomain, that is equivalent to search for arg minK δ̂. In this sense the algorithm becomes
“adaptive”, i.e. it locally selects an optimal bin size according to uncertainty minimisation. This
operation could, in principle, be carried out on each snapshot individually.In practice, this is com-
putationally intensive. Furthermore, as will be discussed in the validation, the sensitivity of the
uncertainty to K is rather low. For this reason, the approach adopted here is to establish a fixed K

map computed on statistical grounds on limited number of snapshots.

3. Validation

3.1. Fluidic pinball

The first test case is the flow around and in the wake of three cylinders with equal diameter D, allo-
cated to form with their centres an equilateral triangle with a side length equal to 3D/2. This con-
figuration is referred as fluidic pinball (N. Deng et al., 2020). A total amount of 4737 snapshots are
generated from a DNS data at Re = 130. The domain is x/D ∈ [−5D, 19D] and y/D ∈ [−4D, 4D].
Synthetic PTV results are generated in this domain considering a random particle distribution with
a particle image density Nppp of 0.02 particles per pixel and a resolution of 25 pixels/D. Particle im-
ages are generated for standard PIV analysis, with Gaussian-shaped particles having a maximum
intensity of 100 counts and a diameter of 2 pixels.

The KNN-PTV is fed with the exact position of the particles. We are conscious that this approach
neglects the random noise due to particle positioning in real images, but it is necessary in this first
stage of validation to isolate the error due to blending snapshots from other sources related to the
image pairing process.

Following Fig. 1, the first step is building the reference low-resolution distribution to perform
the local POD analysis. According to Eq. 1, bref = 23 pixels. The local POD is performed on
subdomains containing 10× 10 vectors (i.e. 40× 40 pixels since the high-resolution grid is set with
a spacing of 4 pixels) with an overlap between adjacent subdomains of approximately 75%. For
each of them, we compute the corresponding snapshot matrices and perform the POD analysis.

With the selected rank for each window, the optimal K selection is carried out: it consists in span-
ning K between 1 (b = bref ) and 32 (b = 4 pixels, according to Eq. 4) for each subdomain to identify
the K minimising the uncertainty from Eq. 6. It can be expected that high number of neighbours
K (thus high particle image density) implies the reduction of modulation effects, as it allows the
use of smaller bin size. On the other hand, it also implies merging velocity vectors from more



20th LISBON Laser Symposium 2022

Figure 2. Map of the optimal K (top) and the corresponding map of bin size according to Eq. 4 in pixels (bottom).

“distant” (in the feature space) snapshots, which increases the random error due to non-perfect
correspondence in the flow structure. For each subdomain the optimal K is thus estimated. For
all bins contained within a subdomain we use the same value of K. The maps shown in Fig. 2 are
obtained following the criteria described in the previous section. For this test case, the domain can
be ideally split in three different regions. In the upstream region, thanks to the availability of more
neighbours very similar to each other, it is possible to reduce the bin size. This is a consequence of
the fact that the flow exhibits limited variability. Instead, further from the near field downstream
of the cylinder, the flow becomes more chaotic, reducing the similarity between the nearest neigh-
bours. Furthermore, as modulation effects become less important, the random error introduced
by small differences between neighbours arises. Both effects reduce the possibility of including
neighbours, thus not allowing to push toward smaller bin size.

Figure 3 reports a qualitative comparison between the proposed KNN-PTV, a standard PIV with
an interrogation window of 32 × 32 pixels and the DNS as ground-truth. A clear improvement in
spatial resolution with respect to the PIV can be observed.

The adopted metric to quantify the error is the normalised root mean square error δRMS , evaluated
as:

δRMS =

√
Nt∑
i=1

(Ui−UDNSi
)2+(Vi−VDNSi

)2

Nt

U∞
, (8)

where U and V are the estimated velocity vectors, UDNS and VDNS are the corresponding vectors
from DNS, Nt is the number of snapshots and U∞ is the freestream velocity, the parameter chosen
to obtain a dimensionless estimation, in this case 1 pixel.

Table 1 reports the parameter ⟨δRMS⟩, i.e. a spatial mean of the above mentioned δRMS . The KNN-
PTV is carried out on datasets with a different number of images (1000, 2000, 3000 and 4737). We
can observe that KNN-PTV is able to progressively reduce the error by increasing the number of
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PIV

KNN-PTV

DNS

Figure 3. Instantaneous streamwise velocity field contours estimated with: a) standard PIV with interrogation
window of 32× 32 pixels, b) KNN-PTV. The reference field from the original DNS is included for comparison (c).

samples.

Table 1. Spatial average of the root mean square error ⟨δRMS⟩, evaluated with Eq. 8.

Method Nt ⟨δRMS⟩ bin size [pixels]

KNN-PTV 4737 0.0299 adaptive
KNN-PTV 3000 0.0308 adaptive
KNN-PTV 2000 0.0316 adaptive
KNN-PTV 1000 0.0337 adaptive

PIV 4737 0.0830 32

The last step for this test case is the assessment of the metric for the uncertainty estimation. To
this purpose we employ the weighted standard deviation of the disparity vectors from Eq. 6. The
approach follows the disparity method proposed by Sciacchitano et al. (2013), with the significant
difference that the vectors are here weighted according to their distance from the bin centre and
from the snapshot in the feature space.

An easy way is the evaluation of the “uncertainty effectiveness” (Timmins et al., 2012), i.e. the
expanded uncertainty explained in Sec. 2. In this case we evaluate the exact coverage factor t for
a 95% confidence from the T-Student tabulation (Coleman & Steele, 2018) taking into account the
exact number of particles involved in the computation of velocity for each bin. For this test case the
value of uncertainty effectiveness computed on both the velocity components and averaged over
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ρ = 0.995

Figure 4. Comparison between δRMS and δ̂RMS at x/D = 1. In the top-left corner of the figure the correlation
coefficient ρ is also reported.

100 snapshots is 90%, i.e. the uncertainty estimated by KNN-PTV is slightly non-conservative.

Following Sciacchitano et al. (2013), the assessment of the uncertainty estimation can be carried
out also from a statistical perspective in time and space. A comparison between the real root mean
square error, δRMS , versus the estimated one, δ̂RMS , on a fixed streamwise position corresponding
to x/D = 1 is shown in Fig. 4. here it is evident that the estimated uncertainty profile follows very
closely the real error, confirmed by a correlation coefficient ρ = 0.994, supporting the meaningful-
ness of the proposed uncertainty quantification method.

3.2. Channel Flow

The second synthetic test case is based on a DNS of a turbulent channel flow, available at the Johns
Hopkins Turbulence Database (http://turbulence.pha.jhu.edu/). The dimensions of the
channel are: 2 half-channel-heights h from wall to wall, 3πh in the span-wise direction and 8πh in
the stream-wise direction. For further details about the simulation settings the reader is referred
to Li et al. (2008). In this simulated experiment, we extract subdomains of 2h×h with a separation
of 2h and 0.25h in the streamwise and wall-normal directions, respectively. The total number of
generated snapshots is 11856 with a resolution of 512 pixels/h and a particle image density equal
to 0.01 particles per pixel. Following the same approach of the pinball test case, PIV velocity fields
with an interrogation window of 32× 32 are generated.

Figure 5 shows the profiles of K (black square) and bHR (green squarer), computed as mean of
the values on the map along the streamwise direction. In addition, the standard deviations of
these values are reported as vertical lines. The trend that the algorithm exhibits in this picture is
to select higher K values near the wall, allowing locally to increase the resolution. The reason is
that increasing the number of neighbours (thus reducing bin size) reduces the bias errors due to
finite spatial resolution on the mean field, while on the other hand increases the random error due
to dissimilarities between the identified neighbours. The trade-off between these two sources of

http://turbulence.pha.jhu.edu/
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Figure 5. Profile of the optimal K, on the top, and of the corresponding bin size, bHR, on the bottom. The values of K
and bHR are represented by squares (black and green respectively) and evaluated as the mean along the streamwise

direction. The vertical lines represent the standard deviation of these values.

error occur at larger K in regions where the systematic error on the mean flow is expected to be
higher, i.e. in the near-wall region.

A qualitative comparison of KNN-PTV against a traditional cross-correlation-based PIV process is
reported in Fig. 6. Their quantitative comparison is reported in terms of ⟨δRMS⟩, computed as in
Eq. 8 (in which U∞ is equal to 7.5 pixels). The value of ⟨δRMS⟩ measured for the proposed method
is 0.0207, that compared to the one achieved by PIV, 0.0248. In this case the improvement of KNN-
PTV with respect to the standard PIV is less evident than in the pinball case.

The uncertainty validation is carried out similarly to Sec. 3.1. The uncertainty effectiveness in this
case has been measured to be 95%, in excellent agreement with the theoretical value.

The statistical assessment in the time domain is shown for (x/h, y/h) = (1, 1) and (x/h, y/h) =

(1, 0.1) in Fig. 7. In the region far from the wall the estimation of the uncertainty is quite accurate,
with a high degree of correlation with the statistical distribution of errors. In the near-wall region
the PDFs are wider, as expected due to the higher intensity of the velocity fluctuations and stronger
velocity gradients. In this case the agreement is slightly weaker.

4. Experimental validation: turbulent boundary layer

The algorithm is tested on experimental data from Guemes et al. (2019). The experiments are
carried out in a Göttingen-type wind tunnel with test section length of 1.5m and cross-sectional
area of 0.4× 0.4m2. The freestream turbulence intensity is below 1% for velocities up to 20 m/s. A
turbulent boundary layer develops on a smooth methacrylate flat plate. All the details about the
experiment are reported in Guemes et al. (2019).

Velocity vectors are extracted with a super-resolution PTV approach (Keane et al., 1995). A multi-
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Figure 6. Comparison of the same snapshot from: a) PIV with interrogation window of 32× 32, b) KNN-PTV and c)
the reference DNS.

step image deformation algorithm (Scarano, 2001) based on high-accuracy interpolation schemes
(Astarita & Cardone, 2005; Astarita, 2007) is used to determine the predictor for the biased search.

In order to build a solid high-resolution reference for comparison, we reduce the number of par-
ticles available for the KNN-PTV by a factor of 10. The starting point for the building of binned
matrices is the result of a PIV processing with an interrogation window of 128×128 and overlap of
25%, while the high-resolution fields for comparison are obtained with a PIV with an interrogation
window of 32× 32 and an overlap of 25%. The total amount of snapshots employed is 30000.

This time, the large number of snapshots and grid points, and consequently the computational
cost for estimating a full map of K, might be intimidating at first glance. The solution can be the
enforcing of statistical homogeneity in the streamwise direction, thus requiring only to compute
a profile. The computational cost is significantly reduced, paying a small price of an increase of
error.

In Fig. 8 a qualitative comparison of the streamwise velocity fields obtained with KNN-PTV and
the low-resolution PIV analysis is reported. The results are reported in dimensionless form using
the boundary layer thickness δ99 and the freestream velocity U∞, equal to 24.7 mm and 15.5 m/s,
respectively. As high-resolution target the results from the PIV analysis with interrogation window
of 32 × 32 pixels are included for reference. Also in this case, KNN-PTV exhibits the capability to
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ρ = 0.964 ρ = 0.942

Figure 7. PDF of the instantaneous error δu and δ̂u for two different points: on the top (x/h, y/h) = (1, 1), on the
bottom (x/h, y/h) = (1, 0.1). The correlation coefficient ρ between estimated uncertainty and error distribution is

included.

PIV128 KNN-PTV PIV32

a) b) c)

Figure 8. Comparison between: a) PIV with interrogation window of 128× 128 pixels, b) KNN-PTV reconstruction, c)
PIV with interrogation window of 32× 32. The parameter δ99 for the dimensionless coordinates is the boundary layer

thickness.

recover small scales that are filtered out by the original PIV analysis with 128× 128 pixels interro-
gation window. The non-dimensional error ⟨δRMS⟩ for KNN-PTV is 0.0170, while for PIV analysis
with interrogation window of 128× 128 pixels is equal to 0.0186.

The uncertainty validation is carried out with the same procedure of the previous section. The
measured uncertainty effectiveness is 92% against the theoretical 95%, which is again a satisfactory
agreement. Figure 9 shows a comparison between the profiles along the wall-normal direction of
δRMS and δ̂RMS . The two curves show a very good agreement, with a correlation coefficient equal to
ρ = 0.959. As expected, higher uncertainty are observed in the near-wall region due to the strongest
velocity gradients.

The statistical distribution of real and estimated errors is performed at x/δ99 = 0.8 and y/δ99 =

(0.1, 1.6), located respectively near and far the wall. The two PDFs in Fig. 10 confirm the trend
of the synthetic case. There is a larger disagreement in the near-wall region, with a significant
difference in systematic error. This can be ascribed in part by the use of experimental data as
“ground-truth”. Indeed, the reference data are also affected by finite spatial resolution in the near-
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ρ = 0.959

Figure 9. Comparison between δRMS and δ̂RMS at x/δ99 = 0.8.

ρ = 0.950ρ = 0.960

(x/δ99, y/δ99) = (0.8, 1.6) (x/δ99, y/δ99) = (0.8, 0.1)

Figure 10. PDF of the instantaneous error δu and δ̂u for two different points: on the top x/D = 0.8 and y/D = 1.6, on
the bottom x/D = 1 and y/D = 0.1. For each one is reported also the correlation coefficient ρ.

wall region and by measurement noise.

5. Conclusions

A novel data-driven approach for the enhancement of PIV spatial resolution has been proposed.
The method enforces local similarity thanks to a merging information (i.e. measured velocity vec-
tors from PTV) of different non-time-resolved snapshots. The domain is split into subdomains,
and for each of them a feature space is built to identify similar realisations. KNN is exploited
to identify neighbouring subdomains in the feature space.The uncertainty is computed employ-
ing statistical dispersion of the velocity values of the vectors identified in each subdomain. Our
method, named as KNN-PTV, provides a complete tool for high-resolution measurements with
uncertainty quantification directly embedded in the process.

As proofed by the validation, KNN-PTV features the corresponding novelty and interesting prop-
erties:
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• Superior resolution if compared to standard PIV and techniques based on interpolating data
from PTV. Similarly to EPTV methods must be sought a trade-off between dataset size and
desired performance.

• Independently on the flow, the method achieves a robust resolution enhancement. With a
local approach, and only using information from few significant neighbours per bin, the
method exploits all the advantages of the flexibility of a locally linear embedding.

• Uncertainty estimation is directly embedded in the process, which is a key feature for appli-
cation and usage of measured data in models for uncertainty propagation.

In conclusion, KNN-PTV presents as a promising end-to-end tool for high-resolution measure-
ments with embedded uncertainty quantification. The proposed framework provides the flexi-
bility to adapt locally the spatial resolution. The method is very easy to implement, as it requires
little if no expertise at all in the training phase. Once the vectors are available, the performances are
weakly sensitive to the parameter choice, thus easing significantly its applicability. We foresee ap-
plications in the field of wall-bounded flows and, more in general, in moderate-to-high Reynolds
number flows where time resolution is often not available. Future research efforts might be di-
rected towards extension to volumetric measurements and/or inclusion of physical constraints to
improve the accuracy. For further details and comparison against the state of art the reader is
referred to the pre-print of the full article available at https://arxiv.org/abs/2205.02766.
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