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ABSTRACT

We propose a data-driven method for increasing the time resolution of snapshot Particle Image Velocimetry. The

flow dynamics are reconstructed by integrating in time an empirical Galerkin model based on Proper Orthogonal

Decomposition modes of the flow field, as developed by Noack et al. (2005). The main objective is to obtain a time-

resolved description of the flow dynamics of an experimental non-time-resolved dataset. The proposed methodology

is assessed both with numerical and experimental data of a wake and a jet flow. The results we obtained indicate that

the method can effectively reconstruct the flow dynamics over a duration spanning several flow characteristic times.

1. Introduction

Time-resolved (TR) Particle Image Velocimetry (PIV) is an important and valuable tool for cap-
turing complete details about the dynamics of turbulent flows. The information about the flow
dynamics is of special relevance for flow control purposes. However, the cost of equipment and
technological barriers, such as the maximum sampling rate of cameras, the pulsation frequency of
light sources, and the lowest signal/noise ratio due to the limited laser-pulse intensity and cam-
era sensitivity, restrict the availability of TR measurements to low-to-moderate Reynolds number
flows. Therefore, it is appealing to develop methodologies to increase the time resolution of snap-
shot PIV for cases where TR PIV is not feasible.

Turbulent flows exhibit inherent patterns whose dynamics often evolve on low-dimensional at-
tractors. Thus, by selecting a proper basis, it is possible to develop condensed models that enable
time-marching estimations to represent the main dynamical features of the flow. This strategy has
been followed in the recent past by exploiting physical constraints, such as Taylor’s hypothesis
(de Kat & Ganapathisubramani (2012); Scarano & Moore (2012)) or advection of vorticity (Schnei-
ders et al. (2016)). However, one of the primary limitations of these approaches is the validity
of the hypothesis upon which they are based. In particular, Taylor’s hypothesis is highly contin-
gent on the selection of an appropriate convection velocity, and its efficacy is severely limited in
three-dimensional and/or evolving flows.
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In this work, we integrate a Galerkin model based on empirical eigenfuncions to obtain a time
super-sampling of non-time-resolved (NTR) velocity fields that can be obtained from PIV experi-
ments. We leverage the Galerkin model proposed by Noack et al. (2005) to obtain reduced-order
flow dynamics. Proper Orthogonal Decomposition (POD, Berkooz et al., 1993) modes are used as
empirical eigenfunctions, and the NTR instantaneous velocity fields are used as initial conditions
to obtain a temporal sequence. Note that this method can be used for either short-term predictions
or time super-sampling of subsequent snapshots.

The mathematical background is detailed in §2. Section 3 reports the validations of the Galerkin
model employing two subsampled datasets: a DNS dataset of the wake of a fluidic pinball and a
dataset of TR PIV measurements of a turbulent jet.

2. Methodology

Through the projection of the Navier-Stokes equations onto an orthonormal basis, the Galerkin
method transforms a set of partial differential equations into a set of ordinary differential equa-
tions. In this context, the empirical Galerkin model proposed by Noack et al. (2005) is based on
the projection of the incompressible Navier-Stokes equations onto a domain spanned by an or-
thonormal basis obtained through a POD of the velocity fields (u(x, t)) in terms of spatial modes
φi:

u(x, t) :=
∞∑
i=0

ai(t)φi(x), (1)

where x and t are respectively the spatial and temporal coordinates, ai are the temporal coefficients
and φi the spatial modes. Note that index 0 refers to the time-averaged velocity field such that

φ0 =
⟨u⟩
|⟨u⟩|

and a0 = |⟨u⟩|, and ai := (u− ⟨u⟩,φi)Ω*.

POD minimizes the Frobenius norm of the residual energy of the data set, i.e. the projection onto
the corresponding subspace retrieves the maximum possible energy for a given number of modes.
Numerically, this is computed with a Singular Value Decomposition (SVD) following the snapshot
method of Sirovich (1987), where the snapshot matrix is U ∈ RNp×Nt , Np is the number of spatial
points times the vector field dimension and Nt the total number of snapshots without temporal
resolution. Typically, Np ≫ Nt, so the economy-size SVD of the snapshot matrix is computed as
follows:

U(x, t) = Φ(x)ΣΨ∗(t), (2)

*(v,w)Ω =

∫
Ω

dV v ·w, inner product in the space of square-integrable vector fields on the domain Ω.
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where Φ ∈ RNp×Nt and ΨNt×Nt are unitary matrices containing the spatial and temporal modes
respectively, and Σ ∈ RNt×Nt is a diagonal matrix containing the singular values σi sorted from
larger to smaller. The square of the singular values σ2

i is representative of the contribution of each
mode to the variance of the flow. Here, ∗ denotes the complex conjugate transpose. Then, from
Eq. 1-2 the POD temporal coefficients can be retrieved A = ΣΨ∗.

The evolution equation for the expansion coefficients ai in the Galerkin approximation is derived
by projecting the incompressible Navier-Stokes equation onto the N -rank POD basis. This process,
known as the Galerkin projection, results in the following system of equations:

d

dt
ai =

1

Re

N∑
j=0

lijaj +
N∑
j=0

N∑
k=0

qijkajak + fπi (A) for i = 1, ..., N, (3)

where lij := (φi,∆φj)Ω and qijk := (φi,∇ · (φjφk))Ω are the coefficients of the viscous and con-
vective terms. fπi := −(φi,∇p)Ω is the pressure term. It shall be noted that we are parting from
the assumption of NTR snapshot PIV, where the obtention of pressure field measurements is elu-
sive. Thus, our proposed Galerkin model for the tackled flow configurations neglects the pressure
contribution and solely considers the terms of the dynamical system that depend on velocity.

Flow super-sampling of poorly-resolved datasets can be done by time-marching methods where
the velocity fields between available snapshots are reconstructed by integrating the evolution
equation Eq. 3 in time. For simplicity, we choose a time-step equal to the TR ∆t of the refer-
ence dataset, with the given snapshots as the initial conditions of the integration. However, this
reconstruction of the flow dynamics around the snapshots is limited, as it is highly dependent on
the time separation between the snapshots. A large separation implies that the error propagation
in the integration is more severe. Therefore, the following strategy is considered. The evolution
equation is integrated forward and backward in time up to the midpoint of two consecutive snap-
shots, where the average between both results is computed. Then, a second integration is done
from the midpoint towards the known initial and final snapshots performing backward and for-
ward integration, respectively. At the midpoint, the initial condition of the integration is updated
with the average value between the first integration. Then, the initial conditions of the second in-
tegration phase are updated with a weighted average between the solution of the first integration
phase and the solution of the previous step in the second integration. Since the initial and final
snapshots are known, the idea of this correction is to add information from the final and initial
conditions respectively.

3. Validation

The method is evaluated on two different datasets, the first obtained from a DNS of a fluidic pin-
ball, and the second from experimental data of a water jet flow.
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Figure 1. Energy and cumulative energy distribution (left and right) for increasing number of modes of the fluidic
pinball. In red dots the rank truncations used for the analysis (respectively 85%, 90% and 95% of the total energy).

The performance of the model is significantly affected by two main factors, the number of modes
chosen to truncate the reconstruction and the time separation between snapshots. The effect of
rank truncation, where the number of modes is reduced to simplify the model, is critical as it de-
termines the total energy of the flow that can be reconstructed. The time separation between snap-
shots affects the accuracy of the temporal integration, as integration errors propagate and amplify
with time, especially in the case of widely spaced snapshots potentially leading to inaccuracies
and integration blow-up in the reconstructed flow fields.

To test the robustness of the model, different rank truncations as well as temporal separations
between snapshots are explored.

3.1. Fluidic pinball

A synthetic dataset obtained from a 2D DNS of the wake behind a fluidic pinball (Deng et al. (2020))
is used as a benchmark for validating the Galerkin model in time-supersampling applications. This
simulation features three cylinders, each with a diameter D, arranged in an equilateral triangle
with side lengths of 3D/2. The configuration is immersed in a flow with uniform velocity U∞.

The simulation is performed at a Reynolds number Re = 130, which places it in the symmetric
chaotic regime (Deng et al. (2020)). Velocity, acceleration and pressure data are interpolated on a
Cartesian grid, where x̃ = x/D ∈ [−5, 15] and ỹ = y/D ∈ [−5, 5], with a constant grid spacing
of dx̃ = dỹ = 0.1. The time step for the DNS is dt̃ = 0.1 with t̃ = tD/U∞, which is the time
normalized by the convective time. Finally, the time-resolved snapshots obtained from the DNS
are downsampled into a sequence of NTR measurements of velocity.

The data set consisting of unresolved 2D velocity fields is used to estimate the coefficients of the
Galerkin model. Therefore, the original data set containing 10000 snapshots is downsampled by
Sr number of snapshots. Two different cases are considered, the first one with a time spacing of
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Figure 2. Mean cosine similarity (Sc) between estimated and reference fluctuation velocity fields for varying
temporal spacing from the initial conditions. The top row indicates a sub-sampling rate of 10 snapshots (i.e. 1

convective time), while the bottom row has a sub-sampling rate of 60 snapshots (i.e. 6 convective times). Red, black,
and blue lines respectively denote the LOR, cubic-spline, and Galerkin comparison with respect to the reference case.

Absolute error against the reference fields are represented by solid lines, whereas relative errors to the LOR are
indicated with dashed ones.

t̃ = 1, taking one snapshot every Sr = 10, and the second one with a time separation of t̃ = 6 taking
a snapshot every Sr = 60. For each of them, three different low-order reconstructions (LOR) have
been selected in terms of the total reconstructed energy, namely, 85%, 90%, and 95%.

As it can be observed in Fig. 1, the number of modes to which the reconstructions are truncated
is close to the elbow of the mode energy plot, therefore, the number of modes required for these
levels of energy does not vary largely between them as will happen later with the turbulent jet
flow.

The velocity fields reconstructed with the Galerkin model (GP) are compared to the reference
snapshot from the TR PIV, the Low-Order Reconstruction (LOR) with the same number of modes
(which is theoretically the best reconstruction that can be achieved by the LOR), and the recon-
struction with temporal modes interpolated with a cubic-spline between time instants where data
is available (Interp). Since only a certain percentage of the total energy is reconstructed, the final
velocity fields will include the truncation error introduced by the LOR. Consequently, a compar-
ison between the GP and the LOR provides insight into the additional error introduced by the
integration of the Galerkin model itself.

The cosine similarity (Sc) between the velocity fields is calculated as a function of the time sepa-
ration relative to the snapshots in the dataset. Fig. 2 illustrates that for a small sub-sampling rate
(Sr), both reconstructions closely match the reference. For separation of only 1 convective time
(Sr = 10) Interp and GP perform similarly. However, for snapshots separated by several con-
vective times, the reconstruction using interpolated modes begins to fail. Visual inspection of the
animated sequence also exhibits unphysical dynamical behaviour. In contrast, the GP maintains
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Figure 3. Reconstruction with 90% of the total energy of streamwise velocity fluctuations of in-sample snapshots of
the Sr = 60 subsample dataset. Left: snapshot at the initial instant. Right: reconstructed snapshot positioned midway

between two consecutive snapshots from the subsampled sequence. From top to bottom: reference field, LOR,
interpolated reconstruction, and Galerkin model results.

good reconstructions. Furthermore, the results are compared in terms of energy reconstruction
in order to assess the impact of the truncation error in the results. As illustrated in Fig. 2, the
similarity coefficient increases with the total energy, thereby reducing the truncation error.

Sc =
u′
ref · u′

recon

∥u′
ref∥2

, (4)

where u′ = u−⟨u⟩, and subscript recon refers to the estimated fields, both with the Galerkin model
or with interpolation.

Fig. 3 shows the streamwise velocity fields reconstructed with 90% of total energy without adding
the pressure coefficient terms at two different time instants. The first column depicts a snapshot
from the specified NTR dataset while the second column illustrates a snapshot taken equidistantly
between two consecutive available snapshots for the case of Sr = 60, where the error is statistically
maximum. The direct interpolation of POD modes does not identify correctly the phase of the
shedding, most likely due to aliasing of the heavily downsampled sequence of modes. On the
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Figure 4. Diagram of the experimental setup of the jet flow shown from top and front views. The plane illuminated
by the laser is depicted in green, and the field of view of the PIV camera is shown in blue.

other hand, GP is able to reconstruct correctly the shedding phase, with minor discrepancies if
compared to the original fields.

3.2. Jet flow

The Galerkin model is then evaluated with an experimental dataset of planar PIV measurements
of a water jet flow. The experiment is carried out in the water tank facility of the Aerospace En-
gineering department at the University Carlos III de Madrid. The nozzle has an exit diameter of
d = 0.03m, and the experiment is performed at a Reynolds number Re = 3300, based on the bulk
velocity Ub = 0.11m/s measured at the nozzle exit and the jet diameter. Fig. 4 gives a schematic
view of the experimental setup.

The velocity fields are obtained from TR planar PIV captured with an Andor Zyla sCMOS camera,
with a sensor resolution of 2160× 2560 pixels (pixel size of 6.5µm). Velocity data are obtained from
x̃ = x/d = 0 at the nozzle exit to x̃ = 8 in the stream-wise direction, and ỹ = y/d ∈ [−1.3, 1.3] in the
span-wise direction, as shown in Fig. 4. The image resolution is 6.53px/mm. The water is seeded
with 56µm polyamide particles, and particle illumination is provided by a 5W pulsed laser. The
laser beam is expanded to a sheet through an optical lens arrangement.

With this setup, a dataset of 60000 TR snapshots is captured with a time separation of ∆t = 0.011s

(corresponding to 0.04 convective times). The initial raw dataset is post-processed with PaIRS†.

†PaIRS: Open software developed by the Experimental Thermo Fluid Dynamics group of the University of Naples
Federico II (Astarita & Cardone (2005), Astarita (2006), Paolillo & Astarita (2024)).
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Figure 5. Energy and cumulative energy distribution (left and right) for increasing number of modes of the fluidic
pinball. In red dots, the rank truncation used for the analysis, corresponding to 90% of the energy.
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Figure 6. Mean cosine similarity (Sc) between estimated and reference fluctuation velocity fields for varying
temporal spacing from the initial conditions. Red, black, and blue lines respectively denote the LOR, cubic-spline,

and Galerkin comparison with respect to the reference case. Absolute error against the reference fields are
represented by solid lines, whereas relative errors to the LOR are indicated with dashed ones.

Subsequently, the post-processed images are low-pass filtered with a Savitzky-Golay filter, com-
prising a 5-snapshots kernel in time and a 5x5 grid point kernel in space. A Gaussian filter is
applied to enhance the smoothing of temporal data.

The flow dynamics are reconstructed for three different sub-sampling ratios, with a total energy
of 90% (Fig. 5). In contrast to the prior validation case, the jet flow requires a greater number
of modes to reconstruct the main flow features (see Fig. 5). Differently from before, achieving
a higher percentage of energy demands a large number of modes, which consequently leads to a
rapid increase in the computational time. Therefore, for simplicity, only one energy level is selected
for the reconstruction and the comparison focuses on the effect of the sub-sampling ratio.

Three different sub-sampling ratios are evaluated, namely Sr = 10, Sr = 20, and Sr = 40 (corre-
sponding to t̃ = 0.4, t̃ = 0.8 and t̃ = 1.6 respectively). Comparing the values of the cosine similarity
for all the cases (Fig.6), it is observed that for small downsampling factors, the reconstruction with
the interpolation seems to perform slightly better than the Galerkin model. On the other hand,
when increasing the sub-sampling ratio, the Galerkin model performs better since the interpola-
tion is affected by a too-low Nyquist frequency. This can be observed in Fig. 7 and 8, where the
interpolated fields at the midpoint between consecutive snapshots exhibit greater discrepancies
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from the reference snapshot as compared to the Galerkin model.
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Figure 7. Reconstruction with 90% of the total energy of streamwise velocity fluctuation contours of an in-sample
snapshot of the Sr = 20 subsample dataset. On the left: the snapshot used as the initial condition. On the right: the

reconstructed snapshot positioned midway between two consecutive snapshots from the subsampled sequence.
From top to bottom: reference field, LOR, interpolated reconstruction, and Galerkin model results.
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Figure 8. Reconstruction with 90% of the total energy of streamwise velocity fluctuation contours of an in-sample
snapshot of the Sr = 40 subsample dataset. On the left: the snapshot used as the initial condition. On the right: the

reconstructed snapshot positioned midway between two consecutive snapshots from the subsampled sequence.
From top to bottom: reference field, LOR, interpolated reconstruction, and Galerkin model results.



21st LISBON Laser Symposium 2024

4. Conclusion

A dynamic model based on Galerkin projection has been proposed for the temporal supersampling
of consecutive non-time-resolved PIV measurements, where only velocity fields are available. The
objective of this model is to enhance temporal resolution and reconstruct flow dynamics, thereby
providing a more detailed and continuous representation.

The reconstruction quality depends on the number of modes considered in the low-order model.
Our results show that the GP model consistently improves when increasing the number of modes
involved in the model, although the computational cost of the integration might become a concern.

Additionally, the model was compared to a reconstruction using interpolated temporal coefficients
at different sub-sampling rates with respect to the ideal time resolution required to describe the
flow in a hypothetical TR PIV experiment. It was observed that for small time separation, typ-
ically less than one convective time depending on flow complexity, direct interpolation of the
POD modes yielded superior results to those obtained using the Galerkin model. Nevertheless,
for larger time separations, interpolation is unable to resolve the reconstructed coefficients due to
aliasing, whereas the Galerkin model performs more effectively.

The Galerkin model has been found to be an effective means of reconstructing the dynamics of
turbulent flows from NTR velocity fields that are separated by several convective times. When
the flow evolves rapidly, with dynamics depending on small-scale structures, the reconstruction’s
accuracy is significantly dependent on the total energy captured, as missing information can lead
to fast-propagating errors. Further work will be done to evaluate the influence of the pressure term
and to smooth the evolution of the reconstructed time-resolved velocity fields.
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