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ABSTRACT

Achieving stable, low-emission combustion with green hydrogen is crucial for climate-neutral ground-based power

generation in turbomachinery. Lean combustion modes with green hydrogen reduce fuel consumption but increase

unsteadiness. Thus, multimodal detection techniques for parameters like density and flow velocity are essential to

understand the interconnected behavior of combustion, advection velocity and noise production. We previously in-

troduced a high-speed camera-based laser interferometric vibrometer system to detect thermoacoustic oscillations

and record advection velocities, using interferometric detection of density fluctuations and correlation-based veloc-

ity estimation. However, this method only estimates integral velocity fields, necessitating the solution of the inverse

problem. This is relying on iterative optimization, which is computationally expensive and struggles with high di-

mensional, noisy or limited data. Physics-Informed Neural Networks offer an innovative and efficient approach to

these problems, combining neural network flexibility with physical law constraints to unravel intricate cause-effect

relationships. Here an approach for reconstructing local velocity fields from a single projection velocity calculated

from integral density data is presented. Using a U-net and model assumptions for coupling local and integral velocity

fields, the training minimizes errors between measured integral input fields and the predicted local field integrals.

The comparison of measured local velocity and the network prediction achieved a relative mean squared error of 3 %.

1. Introduction

Ensuring reliably stable, low-emission combustion with green hydrogen represents a crucial con-
temporary advancement for attaining climate-neutral ground-based power generation within the
field of turbomachinery (“Energy Systems”, 2023). Lean combustion modes associated with green
hydrogen enable a reduced fuel consumption, yet exhibit increased unsteadiness, leading to am-
plified noise and instability attributable to thermoacoustic oscillations. Hence, it becomes essen-
tial to employ multimodal detection techniques, particularly for parameters like density and flow
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velocity. This approach is necessary to comprehend the interconnected behavior of combustion,
advection velocity, noise production, and noise dampening, critical for ensuring stable combustion
and advancing environmental protection.

The measurement of density oscillations entails the detection of the refractive index of gases, which
is directly related to density through the Gladstone-Dale constant, contingent upon the molecular
properties of the gas. Traditionally, refractive index measurements involve holographic or interfer-
ometric methods, facilitated by sophisticated high-speed cameras. These techniques have found
practical applications in combustion research, including the assessment of fluctuations in flame
temperature and heat release rate (Rastogi, 2019; Leitgeb, 2013).

Previously we introduced a high-speed camera-based laser interferometric vibrometer (CLIV) sys-
tem that enabled the detection of thermoacoustic oscillations and seedingless recording of advec-
tion velocities (Greiffenhagen et al., 2020; Gürtler et al., 2021). The measurement approach relied
on interferometric detection of density fluctuations within a turbulent and reactive fluid flow. Sub-
sequently, the flow velocity was computed based on the movement of detected density structures,
which were determined using image correlation techniques, resulting in a low average uncertainty
of 0.6 · 10−2 m/s. However, this approach allows only for the estimation of integral velocity fields
and, thus, the solution of the inverse problem is required.

Such inverse problems involve deducing the causes or parameters of a system from observed out-
comes, which is inherently challenging due to the ill-posed nature of the problem. Traditional
methods for solving inverse problems often rely on iterative optimization techniques, which are
computationally expensive and struggle with high-dimensional and especially noisy data. The ad-
vent of Physics-Informed Neural Networks (PINNs) has introduced a transformative paradigm,
offering an innovative and efficient approach to tackle the complexities associated with inverse
problems (Wang et al., 2020). By combining the flexibility of neural networks with the inherent
constraints of physical laws, PINNs have emerged as powerful tools for unraveling intricate rela-
tionships between cause and effect in the field of flow metrology (Molnar et al., 2023; Mao et al.,
2020), enabling accurate and rapid solutions to previously intractable inverse problems.

In this paper we present a physics-informed neural network based approach for those reconstruc-
tions, allowing the estimation of local velocity fields from a single projection velocity calculated
from integral density data. The approach is based on the combination of a U-net and a model
assumption for the coupling of local and integral velocity fields. Training is performed by mini-
mizing the error between the measured integral input field and the integral of the unknown and
predicted local field. It is shown, that the chosen physical constrains lead to a meaningful recon-
struction result with a relative deviation of 3 %.
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2. Approach

Setup The used burner consists of two housing parts, a movable spigot and an inner swirl body
that separates the outer and inner chambers. The fuel used is propane gas (C3H8), which, like the
air, is fed into the outer chamber of the burner via four connections on the upper part of the hous-
ing. The connections are radially symmetrical on the side of the housing and feed propane and air
alternately into the burner. The swirl is created by four tangential holes in the swirl body, through
which the air-propane mixture flows into the inner chamber of the burner. Finally, the swirled flow
exits the inner chamber through the burner nozzle with the opening radius 7.5 mm. The geometry
of the burner nozzle can be adjusted by the axial position of the spigot and thus allows the outlet
velocity and therefore the swirl rate to be varied. The air mass flow rate is adjusted to 0.5 g/s using
a controller of the type 8626 from the manufacturer Bürkert, while the mass flow rate of the propane
gas is adjusted to 0.039 g/s using a controller of the type red-y smart series from the manufacturer
Vögtlin Instruments GmbH. This results in a swirl number of 0.47 and thus an applied flame with a
comparably small recirculation zone.

The used full-field CLIV system is a holographic interferometer, based on an on-axis heterodyne
Mach-Zehnder setup using a narrowband 532 nm laser (Cobolt Samba) as light source. The laser is
split up into a reference path, guided through a cascade of two acousto-optical modulators generat-
ing the carrier frequency fB and a measurement path, where the collimated laser beam is magnified
to a diameter of 80 mm, before being imaged onto the high-speed camera (Phantom v1610) using
a telecentric lens setup offering a spatial resolution of 140 µm2 per pixel. The camera operated at a
frame rate of 120 kHz using 384×208 pixel, resulting in a field of view of approximately 53×29 mm.
Both beams interfere on the camera sensor and at every pixel the interferometric intensity signal
I(t) ∼ I0 cos (∆φ(t) + φ0), with the amplitude I0, the phase offset φ0 and the time dependent phase
shift

∆φ(t) = 2πfBt+
2π

λ
L(t) (1)

is detected, with the laser wavelength λ and the length of the optical path

L(t) =

∫
n(t)dz (2)

along the laser beam in z-direction with the refractive index n, which is linear depending on the
fluids density ρ, according to the Gladstone-Dale relation

G =
n− 1

ρ
(3)

with the material dependent Gladstone-Dale constant G. Combining Eq. (1)-(3) and differentiation
exhibits the linear relation between the instantaneous frequency

fI =
d∆φ

2πdt
= fB +

L̇

λ
= fB +

G

λ

∫
ρ̇dz = fB +

G

λ
ρ̇LOS (4)
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of the intensity signal and the temporal density fluctuations ρ̇LOS, detected line of sight (LOS) along
the laser beam in z-direction. Please note, that the variance of the Gladstone-Dale constant within
the measurement volume is negligible and therefore not dependent on z.

The instantaneous frequency fI is calculated from the cameras intensity signal by generating the
complex analytic signal

a[k] = cos (∆φ[k]) + j sin (∆φ[k]) (5)

for every sample k, using the FFT-based Hilbert transform and evaluating its instantaneous phase.
In order to increase computational speed, phase unwrapping is avoided by differentiation of Eq. (4)
before computing the instantaneous phase, by using the complex conjugate a∗ of the analytic sig-
nal, shifted by one sample:

fI [k] =
1

2π
angle (a∗[k − 1] · a[k]) . (6)

The spectral range of detectable density oscillations is limited by the camera’s frame rate and the
chosen carrier frequency. Here the carrier was adjusted to fB = 40 kHz, enabling the detection of
density oscillations and higher harmonics within the range of ±20 kHz, considering the detectable
frequency range of the intensity signal up to 60 kHz due to the camera’s frame rate.

From the LOS density data, measured with CLIV, the integral advection velocity is calculated
using image correlation. The correlation is processed in Matlab with the open source tool PIVlab
(Thielicke & Stamhuis, 2014), using 4 iterative correlations with reducing window size ([40, 32,
24, 16] pixel) and 70 kHz window overlap. In order to increase accuracy, image pre-processing for
contrast enhancement (Contrast Limited Adaptive Histogram Equalization, high pass filtering)
and a 2D Gaussian subpixel finder as well as spline-based window deformation were used. The
integral velocity is then further processed using the physics-informed neural network approach.

Physics-informed neural networks Inverse problems, ubiquitous in various scientific and engi-
neering disciplines, involve deducing the causes or parameters of a system from observed out-
comes. These problems are inherently challenging due to their ill-posed nature, where multiple
configurations can lead to the same observations. Traditional methods for solving inverse prob-
lems often rely on iterative optimization techniques, which can be computationally expensive and
struggle with high-dimensional and noisy data. The advent of Physics-Informed Neural Networks
(PINNs) has introduced a transformative paradigm, offering an efficient approach to tackle the
complexities associated with inverse problems. By combining the flexibility of neural networks
with the inherent constraints of physical laws, PINNs have emerged as powerful tools for unrav-
eling intricate relationships between cause and effect, enabling accurate and rapid solutions to
previously intractable inverse problems (Mao et al., 2020). PINNs leverage the expressive power
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of neural networks to learn complex patterns from data, while also enforcing physical consis-
tency through the incorporation of governing equations and constraints. This physics-informed
approach significantly enhances the robustness of inverse problem solutions, even when dealing
with noisy data.

Here such a network is used for the tomographic reconstruction of the integral advection velocity,
which was calculated as described above. Based on the assumption, that the correlation of the
integral density time signal is weighted by the power of the density change along the laser beam,
we assume that the detected velocity can be described by the following model:

vrecon(x, y) =

∫
v(x, y, z)P (x, y, z)

PLOS(x, y)
dz, (7)

where P is the power of the detected density change and the index LOS marks the line-of-sight
integral data. The local power signal is calculated from the LOS power using the inverse Abel
transform under the assumption of rotational symmetry, which is valid for time averaged data
of the flame used. The network principle is depicted in Fig. 1. The integral velocity field vin is
calculated by correlation of integral density data, measured in the swirl-stabilized flame. From
this single input the dense U-net predicts the local in-plane velocity vout which is then used for
reconstruction of the integral velocity field vrecon based on the above model assumption. Training
of the network is performed iteratively using the mean squared error between vin and vrecon and

the gradient of vout as loss function m =
1

N
(||vin − vrecon||22 + ||∇vout||22).

Figure 1. Physics-informed neural network approach for tomographic reconstruction of local in-plane velocity fields.
The integral velocity field vin is fed into the dense U-net, which predicts the local velocity vout. This is used for
calculating the integral velocity field vrecon based on the given model assumption. Training of the network is

performed iteratively using the given loss function.
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3. Results and Discussion

The network performance for reconstructing a single velocity component vx in x-direction is de-
picted in Fig. 2, where (a) shows the integral input data, (b) the output of the U-Net, i. e. the
local in-plane velocity at z = 0 mm, (c) the network loss and (d) the deviation between input and
the reconstruction of the output using Eq. (7). As a result, the network loss converges after 600 s,
running on a single GPU NVIDIA RTX 3090. The highest deviation is detectable near the rotation
axis of the flame at x = 0 mm, which is typical for tomographic reconstruction. Furthermore, it
is visible, that the deviation increases in regions with higher velocity values. The mean deviation
averaged over the full image amounts to 0.195 m/s, i. e. 4 % of the maximum velocity.
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Figure 2. Network performance for a single velocity component vx in x-direction. (a) shows the integral input data,
(b) the output of the U-Net, i. e. the local in-plane velocity at z = 0, (c) the network loss and (d) the deviation

between input and the reconstruction of the output using Eq. (7).

For further evaluation of the network capabilities, data of the local flow velocity measured by
Doppler global velocimetry with frequency modulation was used as a reference (Schlüßler et al.,
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2015). The local velocity was transformed into integral velocity data using Eq. (7) and fed into the
network. The result for the absolute value of the two-component in-plane velocity at z = 0 mm

is shown in Fig. 3, where (a) is the directly measured local velocity using particle-based Doppler
global velocimetry, (b) the predicted local velocity field using the physics-informed neural network
approach and (c) the deviation between measurement and prediction. The network prediction
achieved a mean squared error of 0.185 m/s, while flow velocities up to 6 m/s where detected. Ad-
ditionally the structural similarity index between the measured and predicted flow field calculates
to 91 %.

0 5 10 15 20
5

10

15

20

25

x in mm

y
in

m
m

0

2

4

6

|v
m
e
a
s
|i

n
m

/s

(a) measured in-plane
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(b) reconstructed in-plane
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Figure 3. Comparison of the absolute value of the two-component in-plane velocity at z = 0 mm. (a) Directly
measured local velocity using particle-based Doppler global velocimetry. (b) Predicted local velocity field using the

physics-informed neural network approach. (c) Deviation between measurement and prediction.

While the results show a good agreement between measurement and network output, this gives no
validation of the model assumption Eq. (7), since the network input was calculated by this model.
However, the meaningful results prove that the chosen physical constraints used for calculation
of the network loss are in principle capable for usage in such tomographic reconstruction of flow
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fields. Further improvements are possible by increasing the number of projection angles, enabling
the reconstruction of all three velocity components. Overall, the PINN-based approach proves to
be a valuable new tool for flow metrology.

4. Conclusion

In conclusion, achieving stable, low-emission combustion with green hydrogen is vital for climate-
neutral ground-based power generation in turbomachinery. Lean combustion modes introduce
challenges such as increased unsteadiness and thermoacoustic oscillations. Multimodal detection
techniques, particularly for density and flow velocity, are essential to understand and mitigate
these issues. Traditional methods like holographic and interferometric techniques using high-
speed cameras have advanced combustion research, enabling the assessment of critical parame-
ters. Our previously introduced high-speed camera-based laser interferometric vibrometer system
successfully detected thermoacoustic oscillations and recorded advection velocities without seed-
ing, although it only estimated integral velocity fields.

The challenge of solving inverse problems, due to their ill-posed nature and computational com-
plexity, has been effectively addressed by Physics-Informed Neural Networks (PINNs). These
networks combine neural network flexibility with physical law constraints, offering accurate and
efficient solutions. Our PINN-based approach reconstructs local velocity fields from integral den-
sity data, demonstrating high accuracy with a mean squared error of 0.185 m/s and detecting flow
velocities up to 6 m/s. The results prove that the physical constrains chosen here allow meaningful
tomographic reconstructions. Improvements are possible by using multi-angle detection in order
to reconstruct all three velocity components. Furthermore, physical models such as Navier-Stokes
equations should improve and generalize the network applicability.
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