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ABSTRACT

Particle Image Velocimetry (PIV) is a widely used method for flow diagnostics, but there is still potential for im-

provement, particularly in terms of velocity gradient estimation and computational cost when considering three-

dimensional problems. This paper presents a framework that combines a Particle Tracking Velocity (PTV) approach

with local gradient-based Eulerian reconstruction to improve PIV performance. The approach uses the Coherent

Point Drift (CPD) method for particle pairing and introduces the Affine Least-Squares Transformation (ALST) for lo-

cal deformation gradient estimation. The CPD method consists of pairing particles whose positions at two successive

instants have been obtained from the images. The ALST estimates local deformation gradients, allowing the Eularian

reconstruction of the velocity field. The effectiveness of the proposed method compared to traditional PIV algorithms

is demonstrated by synthetic test cases in both 2D and 3D configurations. In 2D cases, the CPD+ALST approach

outperforms standard PIV methods, especially in capturing local velocity gradients. In 3D cases, comparisons with

TOMO-PIV show the improved performance of CPD+ALST in the context of locally large velocity gradients. How-

ever, the linear nature of ALST makes it less efficient than quadratic binning techniques. The study demonstrates the

potential of CPD+ALST to improve velocity field reconstruction in complex flows.

1. Introduction

Particle Image Velocimetry, especially in two dimensions, is one of the most widely used method

for flow diagnostics, and has benefited from long-terms developments summarized for example

in Raffel et al. (2018). Although the method is undoubtedly mature, there is still room for improve-

ment, one of which is the focus of this contribution. In particular, provided that the particles can

be identified individually in the images, particle tracking velocity (PTV) schemes can be applied
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(see Dabiri & Pecora (2020) for details), and in particular recent developments in two-pulse PTV

techniques (Novara et al. (2023); Mercier et al. (2023)) that have shown that particles can be tracked

from one frame to another with a relatively high density. However, a comparison of PIV and PTV

results often favors PIV techniques when the measurement is not time-resolved. Thanks to a 75%

overlap and a reasonably narrow weighting function, the resolution of PIV vector fields can in-

deed approach the mean distance between particles. The major drawback of correlation-based

methods is the computational cost, especially when added to a three-dimensional tomographic

reconstruction, and the filtering of the high frequencies.

In this contribution the authors attempt to demonstrate the possibility of improving the perfor-

mance of PIV, both in terms of computational cost and velocity gradient estimation, with a unique

framework for 2- or 3-dimensional problems. This is achieved by combining a PTV approach and

a local gradient based Eulerian reconstruction. The PTV is performed using the Coherent Point

Drift (CPD) method introduced by Myronenko & Song (2010) and recently adapted by the authors

for fluid mechanics applications (Mercier et al. (2023)). The CPD allows to identify pairs of par-

ticles between two consecutive images with a relatively low error rate. Beyond the use of CPD,

the novelty of this contribution is the coupling between the CPD and an Eulerian reconstruction,

introduced as to be the "Affine Least-Squares Transformation" (ALST) by the authors. The ALST

consists in estimating the local deformation gradient tensor F(x, t) at any arbitrary position from

the pairs of particles identified by the CPD. This local nature allows the method to be less compu-

tational intensive than other global data binning methods (Gesemann et al. (2016); Sperotto et al.

(2022)).

The CPD and the ALST are briefly introduced in the next sections. A comparison between PIV and

the present results is then presented for two 2-dimensional test cases based on realistic synthetic

images. A comparison with the binning method implemented in Davis 10.2, TOMO-PIV and the

present method is then proposed for two 3-dimensional cases.

2. Coherent Point Drift

The Coherent Point Drift (CPD) method, first introduced in 2006 by Myronenko (Myronenko et al.

(2006); Myronenko & Song (2010)), is a robust point-set registration algorithm used to align two

sets of points in space. Originally developed for computer vision applications, CPD has been

successfully adapted to fluid mechanics contexts as demonstrated in Mercier et al. (2023, 2024). In

double-frame velocimetry, CPD aligns particles detected from the images associated with frame

1 (source points) with those from frame 2 (target points). The coordinates of these particles are

respectively represented as Y ∈ R
M×D and X ∈ R

N×D, where D = 2 or 3 is the dimension of the

problem.

CPD performs this alignment by determining a geometrical transformation T (Y, θ) that maxi-



2

Figure 1. Working principle of the CPD. The point sets X (•) and Y (◦) are shown in their initial states on the left. For

iteration 1 and n, the point sets are X and T (Y, θ) (◦). The shaded area represents the influence region of X for the

Gaussian Mixture Model. Figure reproduced from Mercier et al. (2024)

mizes the correspondence between the transformed source pointsỸ = Y + T (Y, θ) and the target

points X. The method handles rigid, affine, and non-rigid deformations, with the non-rigid variant

being the most effective for tracking particles in turbulent flows. This transformation is modeled

using a Gaussian Mixture Model (GMM), where the centroids are aligned with the source points,

and the Gaussians are weighted by parameters θ. The optimization involves minimizing a nega-

tive log-likelihood function, which in its simplest form is:

E(θ, σ) = −
N
∑

n=1

log
M
∑

m=1

e−
||Xn−Ym−T (Ym,θ)||2

2σ2 . (1)

The solution is obtained iteratively using an Expectation-Maximization (EM) algorithm which is

illustrated in Figure 1. Initially, σ is estimated, and θ is optimized to ensure spatial coherence in

the deformation. Subsequently, σ is updated to reflect the distance between X and the updated

Ỹ. Through successive iterations, σ decreases, helping to separate unpaired particles from the op-

timization problem. Convergence results in source particles close to target particles being paired,

while those without close neighbors are identified as outliers.

For more detailed information on the original method, see Myronenko & Song (2010), and for the

adaptations specific to particle tracking, refer to Mercier et al. (2024).

3. Affine Least-Squares Transformation

The Affine Least-Squares Transformation consists in assuming that the transformation ζ t1t0 that de-

fine the displacements field of the particles at time t0 to the time t1 is only a function of the local

deformation gradient tensor, F(x0, t), and the displacement U = [U, V,W ]′(x0) at a reference posi-



tion x0 given

ζ t1t0 (x, t) = Ux0
+ (F(x0, t)− I)(x− x0) (2)

where I is the identity matrix. The partial derivatives that constitute the tensor F and the local

velocity can be estimated from a set of known displacements in the vicinity of the considered

reference position x0, here corresponding to the position of the particle to be advected. The know

displacements [Up, Vp,Wp]
′ of the neighbor particle pair p are obtained during the application of the

CPD. The problem can be written in the form of a linear system, and is solved in a least-squares

sense with

x̃ = argmin( ‖Ax− b‖2
2
) (3)

where A contains the positions of the particle p [XpYpZp]
′ = [xpypzp]

′ − x0, b is filled with the

samples [Up, Vp,Wp]
′, and x contains the elements of F(x0, t) and Ux0

where ux is ∂u/∂x. The

matrices can be written as

A =









































1 0 0 X1 Y1 Z1 0 0 0 0 0 0

0 1 0 0 0 0 X1 Y1 Z1 0 0 0

0 0 1 0 0 0 0 0 0 X1 Y1 Z1

1 0 0 X2 Y2 Z2 0 0 0 0 0 0

0 1 0 0 0 0 X2 Y2 Z2 0 0 0

0 0 1 0 0 0 0 0 0 X2 Y2 Z2

...

1 0 0 Xn Yn Zn 0 0 0 0 0 0

0 1 0 0 0 0 Xn Yn Zn 0 0 0

0 0 1 0 0 0 0 0 0 Xn Yn Zn
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(4)

This system can be supplemented with a weighting matrix W that decreases the weight of each

sample as its distance from x0 increases. A penalty c can also be applied to ux + vy + wz to ensure

that the flow is not divergent. If this latter penalty is enabled, this problem is solved through

Tikhonov regularization with

x̃ = argmin( ‖W(Ax− b)‖2
2
+ α‖cx‖2

2
), x̃ = (AT

W
T
A+ αcTc)−1

A
T
W

T
b (5)

In contrast, if the penalty is not enabled, the problem can be split into three one-dimensional prob-

lems, allowing for much better performance.

The least-squares formulation has the advantage that, in the event that the variance of the observed

data is known, it can be propagated directly to the components of the x vector for the evaluation

of uncertainties.



4. Definition of the test cases

The effectiveness of the method is evaluated using synthetic test cases. These comprise images

of randomly distributed particles advected in a controlled manner between two time steps. The

images were obtained using a high-fidelity in-house PIV image generator, described in Acher et al.

(2022) with a density of 0.05 particle per pixel. Two- and three-dimensional configurations can be

considered by adjustment of the thickness of the laser sheet and the number and position of the

cameras. The particles are massless and are in all cases advected by integrating their trajectory

over three-dimensional velocity fields for a given inter-frame time.

A first velocity field is stationary, resulting from the sum of cosines of different wavelengths, the

phase of which is set so that the velocity field is solenoidal. This canonical flow contains hyper-

bolic stagnation points, which are a challenge for correlation-based velocimetry techniques. Its

simplicity also allows a convenient assessment of the ability of the different methods to capture

the local velocity gradients.

The second velocity field features the characteristic of a turbulent flow. It is generated from the

method proposed by Martinez-Sanchis et al. (2021). The mean velocity field has a range of values

between 0 and 1 m/s across the vertical direction of the field of view, which covers a distance

of approximately 220 mm. The turbulence intensity is 5% relative to 1 m/s, the integral length

scale is 100 mm and the Kolmogorv scale is 0.05 mm. For the three-dimensional case, the particles

are about 0.5 mm apart. This test case is used to evaluate the different velocimetry techniques in

the context of a typical turbulent flow where the smallest scales fall below the resolution of the

methods.

5. Application to 2-dimensional cases

The combination of CPD for particle pairing and ALST for Eulerian reconstruction is first com-

pared with a classical 2D2C PIV algorithm.

For this analyse, synthetic images were generated for a 2560×2160 pixels camera capturing a field

illuminated by a 0.5 mm thick laser sheet. The particle density was selected to achieve a target

value of 0.05 particle per pixel (2.5 pixel between nearest neighbour particles in average). The time

between frames is set so that the norm of the maximum displacement of the particles is close to 8

pixels.

The CPD is operated on lists of particles detected from the images by a single pass local peak

detection, and localised with a subpixel accuracy through Gaussian fitting.

The first pass of the PIV is performed with a 64 pixels interrogation window, which is decreased

to 32 pixels with 75% overlap for the final pass. It results in vectors separated by 8 pixels. The



ALST has been configured to match these dimensions. In particular, the standard deviation of the

Gaussian weighting function has been set to 8 pixels, while the search radius is 16 pixels.

A qualitative comparison between the two methods and the imposed velocity field is presented

in Figure 2, which depicts the turbulent flow benchmark. In this context, both methods yielded

comparable results. However, the field reconstructed with the PIV algorithm exhibited a slight

higher degree of blurring. It is also to be noted that neither method is capable of capturing the

locally high and low velocity spots that are visible in the reference field. This is because the ref-

erence is a snapshot of the velocity field at the intermediate time between the frames. In contrast,

the reconstruction can only consider a velocity field that has been averaged over the particle path

between the two frames.
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Figure 2. Axial component of the imposed (Reference) and reconstructed turbulent particle displacement field with

the PIV and 2D CPD+ALST methods.

Figure 3 which is related to the periodic flow can now be analysed for a more quantitative anal-

ysis. This velocity field contains hyperbolic stagnation points that present a challenge for PIV

reconstruction, as the cross-correlation function computed for interrogation windows that contain

such a feature fails to produce a well-demarcated peak. The result of this lack of consistency in the

PIV can be observed in the top row of Figure 3, which shows the reconstructed velocity field. The

displacement at the positions x = ±200 pixel and y = 0 pixel is indeed not correctly evaluated. The

ALST is however to provide a reconstruction that is in good agreement with the reference velocity

field.

The bottom row of Figure 3 displays the gradient of the displacement in the x direction. For PIV, the

gradient is calculated from the displacement field by finite differences. Consequently, the errors in

the reconstruction are amplified by the derivation, as can be observed. With regard to ALST, it is

found to provide a relevant reconstruction of the gradient of the displacement, which is a positive

finding given that it has been designed for this specific purpose.



These two test cases show that a significant improvement can be obtained in estimating the gra-

dients of a velocity field by applying the compilation of the CPD and the ALST. Nevertheless, the

ALST is not as computationally effective as the PIV, as the full process from particle detection to

field reconstruction takes three times longer than with PIV with the current implementation. This

method is also limited to experiments where the density of the particles is low enough to identify

them individually.
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Figure 3. Top row: Axial component of the imposed (Reference) and reconstructed periodic particle displacement field

with the PIV and 2D CPD+ALST methods. Bottom row: the gradient of the displacement with respect to the x

direction.

6. Application to 3-dimensional cases

The main advantage of the proposed method for Eulerian reconstruction is expected to be observed

in the context of comparisons with TOMO-PIV, i.e. in three-dimensional problems. The follow-

ing section presents a comparison between our CPD+ALST method and the classical TOMO-PIV.

For the sake of completeness, a comparison is also provided with the results obtained with the

two-pulse shake-the-box (STB) method algorithm in combination with the "binning method", both

implemented in LaVision Davis 10.2.

The comparison relies of the images obtained from a synthetic experiment involving the periodic

and the turbulent flows defined in Section 4. Four 1600 ×1200 pixel cameras are even distributed

around an axis normal to the measurement volume, which has an approximate dimensions of

300 mm × 220 mm × 20 mm. The seeding density is set to achieve 0.05 particle per pixel in the

images. This density is chosen because it is the commonly accepted maximum density for the

TOMO-PIV, although it could be increased with the CPD+ALST and STB methods (Mercier et al.

(2024)). The CPD is applied on lists of particles that have been triangulated from images following
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Figure 4. Axial component of the imposed (Reference) and reconstructed turbulent particle displacement field with

the TOMO-PIV, 3D CPD+ALST, and Shake-The-Box+binning methods.

the procedure described in Thomas et al. (2024).

The comparison involves both the standard ALST and the ALST with penalisation of the diver-

gence, as well as two versions of the binning methods. These are the first- and second-order bin-

ning methods, which consist in fitting the local velocity by respectively a first and a second order

polynomial. In essence, both ALST and first-order binning are similar insofar as they evaluate both

the velocity and its first derivatives. The second-order binning additionally computes the second

derivative, which is expected to better resolve regions where velocity field exhibits large curvature.

The TOMO-PIV is performed following a volume reconstruction using the BI-MART method (see

Thomas et al. (2014)). The first interrogation volume is 96 voxel large, and it is iteratively reduced

to the a final size of 32 voxel. Shake-The-Box and CPD are applied with default parameters. The

dimensions involved in ALST and binning are set as small as possible while maintaining stability.

A first qualitative comparison is performed in Figure 4 for the turbulent test case. TOMO-PIV is

found to have poor performance compared to all other methods, including a lack of resolution

and the presence of numerous artefacts. In contrast, the second-order binning is the most appro-

priate approach for reconstructing the fine scales that appear as strikes in the imposed velocity

field. First-order reconstruction methods have similar performance. However, CPD+ALST tends

to produce a less smooth field than first-order binning. It is not clear whether this is the result of

higher resolution of the CPD+ALST or whether it is mostly noise. Furthermore, the penalisation

of the divergence has only a marginal effect on the reconstructed fields. It seems that it adds some

robustness to the process, which in turn leads to the removal of the few spurious vectors that can

be found in the raw ALST.

A quantitative analysis of two periodic flows with two different fundamental wavelengths of 300
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Figure 5. Axial component of the imposed (Reference) and reconstructed large wavelength periodic particle

displacement field with the TOMO-PIV, 3D CPD+ALST, and Shake-The-Box+binning methods. The graph shows the

profile at the constant y = 150 for the reference (· · · ), the TOMO-PIV (—), the div-free ALST (—), and the 2nd-order

binning (−−).
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Figure 6. Gradient with respect to the x direction of the axial component of the imposed (Reference) and reconstructed

large wavelength periodic particle displacement field with the TOMO-PIV, 3D CPD+ALST, and

Shake-The-Box+binning methods. The graph shows the profile at the constant y = 150 for the reference (· · · ), the

TOMO-PIV (—), the div-free ALST (—), and the 2nd-order binning (−−).
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Figure 7. Axial component of the imposed (Reference) and reconstructed short wavelength periodic particle

displacement field with the TOMO-PIV, 3D CPD+ALST, and Shake-The-Box+binning methods. The graph shows the

profile at the constant y = 150 for the reference (· · · ), the TOMO-PIV (—), the div-free CPD+ ALST (—), and the

2nd-order binning (−−).

and 150 voxel respectively is proposed. The displacements computed by the different methods are

shown in Figures 5 and 7 for the two wavelengths, and the gradients of the displacement δx with

respect to the x direction are given in Figures 6 and 8. For the 300 pixel case, only the TOMO-PIV

shows difficulties in reconstructing the field at the location of the hyperbolic stagnation points.

The other methods all show very similar results with a slightly higher level of noise for the ALST,

especially without the divergence-free condition.

However, the 150 pixel case is more challenging for both TOMO-PIV and CPD+ALST. Indeed,

CPD+ALST tends to underestimate the displacement in the region where the flow has the greatest

curvature and is noisy along the y = 150 voxel line. The first-order binning of the STB traces also

suffers from displacement underestimation, but is overall smoother than the CPD+ALST. In con-

trast, the second order binning is able to reconstruct the reference flow almost perfectly. In an at-

tempt to determine whether the deficiencies of our method were due to the pairing step with CPD

or the ALST reconstruction, we also applied the ALST to the list of pairs determined for the STB.

The result of this process is also presented in Figures 7 and 8. The accuracy of the reconstructed

field with this combination is found to be intermediate between the first- and second-order bin-

ning of the same pairs from STB. This implies that the poor reconstruction in some regions is due to

the CPD missing a significant number of pairs. As for ALST, provided the input pairs are of good

enough quality, it is found to preserve the flow structure better than first-order binning, while both

are based on an affine approximation of the displacement field.
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Figure 8. Gradient with respect to the x direction of the axial component of the imposed (Reference) and reconstructed

short wavelength periodic particle displacement field with the TOMO-PIV, 3D CPD+ALST, and

Shake-The-Box+binning methods. The graph shows the profile at the constant y = 150 for the reference (· · · ), the

TOMO-PIV (—), the div-free ALST (—), and the 2nd-order binning (−−).
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Figure 9. Comparison between the reconstruction displacement field of the large wavelength periodic field with the

first-order and the second-order, in the context of dense particle images (0.1 ppp), and with maximum allowed

triangulation error of 1.5 voxels in the Davis 10.2 IPR.



The downside of second-order binning’s ability to resolve small scales is that it tends to amplify

noise that arises in harsher conditions, including higher particle density and higher triangulation

error. This is demonstrated in Figure 9 that shows the reconstruction for the same flow as in

Figure 5, but with a density of 0.1 particles per pixel, and a maximum allowed triangulation error

of 1.5 voxels. These conditions may be encountered in a real experiment, and the corresponding

effect they have on the two-pulse Shake-The-Box is described in Mercier et al. (2024).

7. Conclusions and Ongoing work

The authors previously demonstrated that the Coherent Point Drift (CPD) method is a solution to

the particle pairing problem in the context of two-pulse velocity. However, the results of CPD alone

produce a set of discrete tracks that are strongly affected by particle detection errors and cannot be

straightforwardly interpolated on a grid. To address this issue, the authors implemented a method

to determine a local affine approximation of the displacement field based on the tracks resulting

from the CPD. The so-called Affine Least-Squares Transformation (ALST) method allows Eulerian

reconstruction with significantly better performance than TOMO-PIV in 3D problems.

The present work demonstrates the ability of CPD+ALST to reconstruct 2D and 3D velocity fields

from 2-instants tracks of different nature better than TOMO-PIV. The ALST also compares well

with the first-order binning method proposed in the commercial software Davis 10.2, especially

when the divergent-free condition is enabled. However, the second-order binning method which

is also implemented in Davis, outperforms the ALST providing the particle pairing is accurate

enough.

The calculation of the curvature of the velocity field appears to be very effective in improving the

quality of the reconstruction. The second derivatives can be taken into account by modifying the

ALST in this way, and this will be part of the ongoing work to develop this framework.

Acknowledgments

The authors would like to thank the ERDF of the Nouvelle Aquitaine Region for their financial

support to the Grinfil project (Convention P-2020-BAFE-33) as well as the ANR through the France

relance plan (Convention ANR-21-PRRD-0001-01) .

References

Acher, G., Thomas, L., Tremblais, B., & David, L. (2022, sep). A new camera model combining

an analytical model and a discrete correction to overcome refractive index variation challenges.



Measurement Science and Technology, 33(12), 125204.

Dabiri, D., & Pecora, C. (2020). Particle tracking velocimetry (Vol. 785). IOP Publishing Bristol.

Gesemann, S., Huhn, F., Schanz, D., & Schröder, A. (2016). From noisy particle tracks to velocity,

acceleration and pressure fields using b-splines and penalties. In 18th international symposium on

applications of laser and imaging techniques to fluid mechanics, lisbon, portugal (Vol. 4).

Martinez-Sanchis, D., Sternin, A., Sternin, D., Haidn, O., & Tajmar, M. (2021). Analysis of periodic

synthetic turbulence generation and development for direct numerical simulations applications.

Physics of Fluids, 33(12), 125130. doi: 10.1063/5.0071002

Mercier, B., Gomez, Q., Thomas, L., Tremblais, B., & David, L. (2023). Proof-of-concept study

of coherent point drift registration for particle pairing in particle tracking velocimetry. In 15th

international symposium on particle image velocimetry (pp. 1–6).

Mercier, B., Thomas, L., Tremblais, B., & David, L. (2024). A robust pairing method for two-pulse

particle tracking velocimetry based on coherent point drift. Measurement Science and Technology.

Myronenko, A., & Song, X. (2010). Point set registration: Coherent point drift. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 32(12), 2262-2275.

Myronenko, A., Song, X., & Carreira-Perpiñán, M. (2006). Non-rigid point set registration: Co-

herent point drift. In B. Schölkopf, J. Platt, & T. Hoffman (Eds.), Advances in neural information

processing systems. MIT Press.

Novara, M., Schanz, D., & Schröder, A. (2023). Two-pulse 3d particle tracking with shake-the-box.

Experiments in Fluids, 64(5), 93.

Raffel, M., Willert, C. E., Scarano, F., Kähler, C. J., Wereley, S. T., & Kompenhans, J. (2018). Particle

image velocimetry: a practical guide. springer.

Sperotto, P., Pieraccini, S., & Mendez, M. A. (2022, jun). A meshless method to compute pressure

fields from image velocimetry. Measurement Science and Technology, 33(9), 094005.

Thomas, L., Mercier, B., Tremblais, B., & David, L. (2024). Coupling coherent point drift and

affine least-squares transformation to build trajectories in tr-ptv. In 21st international symposium

on applications of laser and imaging techniques to fluid mechanics, lisbon, portugal.

Thomas, L., Tremblais, B., & David, L. (2014). Optimization of the volume reconstruction for clas-

sical tomo-piv algorithms (mart, bimart and smart): synthetic and experimental studies. Mea-

surement Science and Technology, 25(3), 035303.


	Introduction
	Coherent Point Drift
	Affine Least-Squares Transformation
	Definition of the test cases
	Application to 2-dimensional cases
	Application to 3-dimensional cases
	Conclusions and Ongoing work

