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ABSTRACT

Several techniques exist to measure the carrier and dispersed phases in multi-phase flows. Particle image velocime-

try (PIV) analyzes the carrier phase by cross-correlating particle images, but its resolution is limited by the size of

the interrogation window, making it difficult to resolve fine-scale turbulent structures. Particle tracking algorithms

capture translational motion of dispersed particles well, but struggle with rotational motion, especially for irregu-

lar and aspherical particles. Currently, there is no method that universally measures both the carrier phase velocity

field and the translational and rotational motions of dispersed particles. This study evaluates wavelet-based optical

flow velocimetry (wOFV) for motion estimation in multi-phase flows, focusing on dispersed ellipsoidal particles and

their surrounding turbulent carrier flow using synthetic image data. The research proceeds in two phases: first, the

rigid motion of ellipses, including translational and rotational components, is analyzed using wOFV-generated dense

motion fields. The results highlight the critical role of the regularization weighting parameter λ. Higher λ values im-

prove translational motion estimation, while an optimal λ avoids under-regularization and non-physical structures

in rotational motion. wOFV maintains accuracy in combined motion scenarios with optimal λ values. In the second

phase, wOFV captures the turbulent carrier flow around an aspherical particle, benchmarked against DNS data and

compared to PIV. wOFV outperforms PIV in resolving finer structures near the particle surface and in accurately repre-

senting the wake region. Error analyses confirm wOFV’s superior performance, with optimal results within a specific λ

range. In conclusion, wOFV is a highly effective tool for the analysis of multi-phase flow dynamics, providing greater

resolution and accuracy than PIV, especially in complex scenarios involving aspherical particles.

1. Introduction

Simultaneously capturing the movement of dispersed particles and their encompassing turbulent
carrier flow is pivotal for understanding the intricate interactions that modulate both particle and
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flow dynamics. The inherent non-sphericity of many particles, such as those found in biomass
combustion or the pneumatic transport of fibers, introduces an additional layer of complexity to
these systems (Voth & Soldati, 2017; Panahi et al., 2019). Accurate capture of particle-turbulence
interactions demands the development of precise particle-resolved experimental and numerical
methods. In numerical investigations of particle-laden turbulent flows, the common approach em-
ploys an Euler-Lagrange framework, treating the dispersed phase as point particles and not fully
resolving their interactions with the turbulent carrier phase (Balachandar & Eaton, 2010). For non-
spherical biomasses, this method requires detailed knowledge of drag and torque characteristics,
which are shape- and orientation-dependent within the flow field. These specifics are often ob-
tained from highly-resolved single-particle simulations, as exemplified by the authors in a prior
study (Fröhlich et al., 2020). However, the extreme computational effort of fully resolved simu-
lations for particle-laden turbulent flows at high Reynolds numbers underscores the compelling
necessity for high-resolution experimental methods in such environments.

Various strategies exist for experimentally measuring the carrier and dispersed phases simultane-
ously. In this study, we will focus exclusively on planar techniques, which, despite the significant
advancements in three-dimensional measurement technologies, remain predominant due to their
widespread usage and ease of implementation. A straightforward approach involves seeding the
carrier phase with ideally following tracer particles. The scattered light of an incident laser sheet
illuminating both tracer and large particles is captured using a single camera. Subsequently, both
phases are separated using image discrimination algorithms based on differences in light intensity
and particle size (Schmidt & Sutton, 2020). The processing of the carrier phase commonly employs
particle image velocimetry (PIV), which involves cross-correlation of particle images within inter-
rogation windows across consecutively recorded frames (Raffel et al., 2018). However, the spatial
resolution of the resulting vector field is confined by the dimensions of the interrogation window,
presenting a hurdle in effectively resolving small-scale turbulent structures (Kähler et al., 2012).
Velocity measurements of large particles within the dispersed phase typically rely on a particle
tracking algorithm. These algorithms either track a reference point (e.g., the centroid) or operate
via cross-correlation, akin to particle image velocimetry. While effective in capturing translational
motion, challenges emerge when addressing the rotational movement of aspherical particles. Par-
ticle rotation cannot be captured by cross-correlation methods when the interrogation window is
larger than the particle size, as the rotational movement of a rigid body translates into a velocity
gradient across the particle. An alternative approach to quantify rotational speeds involves fitting
a suitable shape onto the particle image and tracking its orientation over time, as demonstrated
by the authors for ultra-high-speed measurements of fibrous aspherical biomasses in a previous
investigation (Geschwindner et al., 2023). Nonetheless, it is evident that there is currently no uni-
versally applicable approach to measure both the carrier phase velocity field and the translational
and rotational movement of aspherical dispersed particles.

A novel approach to flow velocimetry are methods based on optical flow, which have the capability
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to yield dense motion fields, generating a vector per pixel. An advanced form within this category
is wavelet-based optical flow velocimetry (wOFV), incorporating an inherent multi-scale process
within its mathematical framework (Kadri-Harouna et al., 2013; Dérian et al., 2013). Demonstrating
superior accuracy in processing tracer particle images derived from direct numerical simulations
(DNS) of turbulent flow fields, these methods outperform state-of-the-art PIV codes as demon-
strated in diverse scenarios, including homogeneous isotropic turbulence (Schmidt & Sutton, 2019)
and wall-bounded flows (Nicolas et al., 2023; Jassal & Schmidt, 2023). While dense motion fields
have demonstrated potential in capturing small-scale structures in turbulent fluid motion, the com-
prehensive measurement of the rigid motion of aspherical particles within a flow field using optical
flow methods has not yet been explored. This study introduces a novel application of wOFV for
measuring both the carrier and dispersed phase movements in a unified framework.

To rigorously test and validate the wOFV algorithm for multi-phase motion estimation, our method-
ological design proceeds in two distinct phases:

1. Rigid motion estimation of aspherical particles: Initially, we simulate ellipsoids moving
in a plane without a carrier flow to focus solely on the capability of wOFV to extract large
particle motions. This step serves to establish the baseline accuracy and efficiency of wOFV
in tracking simple translational and rotational movements of isolated ellipsoidal particles.

2. Multi-phase flow simulation and carrier-phase turbulence estimation: Building on the work
of (Fröhlich et al., 2020), we perform a DNS of an ellipsoidal particle immersed in a turbulent
carrier flow. From this DNS, synthetic tracer particle images are generated and then seg-
mented into fluid and dispersed phases. These segmented images are processed with wOFV
to assess the efficacy of the algorithm to estimate the dynamic turbulent carrier phase sur-
rounding the particle.

To validate our approach, we compare the wOFV-processed synthetic data from both phases against
ground truths derived from their respective simulations. Additionally, we benchmark the results
of the fluid phase against those obtained using a state-of-the-art PIV code.

In the subsequent section, we provide a concise overview of the optical flow method utilized and
its application within the multi-phase velocimetry framework developed for this study. Further-
more, we will illustrate how synthetic images are generated for both ellipsoidal particles and their
surrounding turbulent flow, using the data obtained from DNS.
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2. Methods

2.1. Wavelet-based optical flow velocimetry (wOFV)

The general principle of optical flow techniques for velocimetry is the conservation of the bright-
ness intensity I(x, t), which is expressed as the optical flow constraint equation:

∂I(x, t)

∂t
+ u(x, t) · ∇I(x, t) = 0. (1)

When integrated over a unit time interval, Eq. (2) computes the displaced frame difference. This
term establishes the correlation between the measured intensity I(x, t), and the desired two-dimensional
displacement vector field, denoted as u(x, t). Effectively, this equation states that the spatial inten-
sity distribution of the second image I1 can be mapped onto the first image I0 using the displace-
ment field u(x), such that their difference vanishes. In other words, a minimization of Eq. (2) leads
to an ideal dewarping solution.

I0(x)− I1(x+ u(x)) = 0 (2)

However, this data term is ill-posed as it connects two velocity components, treated as unknowns,
to a single observable variable being the local intensity. This issue is also known as the aperture
problem (Heitz et al., 2010), where local motion can only be reliably estimated in the direction of
the intensity gradient in the absence of distinguishable features. To address this challenge, varia-
tional approaches undertake a minimization of the data term within a penalty function, forming
JD (Horn & Schunck, 1981). This process is coupled with a regularization term, JR, which solely
depends on the derivatives of the velocity field. The concurrent minimization of JD and JR results
in a well-posed convex optimization problem for computing the estimated displacement field û as
expressed in Eq. (3).

û = argmin
u

JD(I0, I1, u) + λ JR(u) (3)

In the literature, a multitude of regularization terms are found depending on the application of
the optical flow algorithm. For turbulent fluid flows with high levels of vorticity, a penalization of
second-order derivatives in the form of a Laplacian is commonly used, which is as well employed

in this study (Kadri-Harouna et al., 2013; Nicolas et al., 2023): JR =

∫
Ω

|∇2u1|2 + |∇2u2|2dΩ. The

scalar parameter λ, often termed regularization weighting parameter, determines the weighting
balance between JR and JD, with higher values promoting increased smoothness in the estimated
displacement field.

wOFV differs from traditional OFV methods by performing minimization in the wavelet domain
rather than the spatial domain, as shown in Eq. 4. This minimization involves the wavelet coeffi-



21st LISBON Laser Symposium 2024

cients θ = (θ1, θ2)
T , using the discrete wavelet transform (DWT), represented as θ = Ψ−1(x) u.

θ̂ = argmin
θ

JD(I0, I1, θ) + λ JR(θ) (4)

The minimization is performed over multiple scales in the wavelet domain, which is inherently
a multi-resolution approach (Kadri-Harouna et al., 2013). This technique has been validated to
effectively resolve the wide range of length scales in turbulent flows for several flow configura-
tions (Dérian et al., 2013; Schmidt & Sutton, 2019; Nicolas et al., 2023). Furthermore, recent research
has shown that wOFV outperforms PIV over a wide range of λ values (Nicolas et al., 2023) for the
estimation of turbulent wall-bounded flows. It is therefore of great interest to see the performance
of wOFV for both the estimation of the surrounding carrier turbulence and the particle motion
itself.

2.2. Rigid motion estimation of ellipsoidal particles from dense motion fields

Previous research has utilized wOFV to estimate fluid velocities from tracer images. However, an
intriguing extension is to determine if it is possible to extract the rigid motion of a solid particle
from a dense motion field generated using optical flow velocimetry methods. For a planar image,
the motion of a solid body can be decomposed into translational velocity up and angular velocity ωp

around the z-axis. Although any point on the solid body can theoretically be used for this analysis,
it is practical to use the centroid c to determine uc = up,c for the translational velocity. Using this
definition, rotation is defined around the center point [xc, yc]. If the translational velocity of the
center point and the angular velocity are known, the velocity ui for each point on the solid body is
given by

ui = up,c + |rci| ωp eφ,i, (5)

where rci is the vector from position i to the center point, and eφ,i is the unit vector perpendicular
to rci. In images, point i represents individual pixels covered by the particle. All quantities are
illustrated in Fig. 1(e). Based on this definition, multiple ways exist to reverse this computation,
i.e. to compute uc and ωp from the dense motion field ui from i pixels covering the particle surface
in pixel space. Prior to the work presented in this paper, we have compared different solution
methods by first computing 2000 individual ideal vector fields for a synthetic simulated ellipsoid
(shown in Fig. 1(a-d)). Second, wOFV was computed using the synthetic rendered pixel image
pair representatively shown in Fig. 1(a), resulting in a dense motion field deviating from the ideal
solution. While a direct solution of the overdetermined system of equations based on Eq. (5) is
technically possible using a least-squares approach, the most accurate results were yielded through
first calculating a translational velocity based on the mean velocity of all N particle-covered pixels

ûp,c =
1

N

∑
i

ûi, (6)
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(e)

Figure 1. Synthetic image generation and motion estimation of ellipse particles using wOFV. (a) Synthetic pixelated
images of moving ellipses. (b,c) Corresponding ideal dense motion fields. (d,e) Visualization of rigid motion

estimation from dense motion fields.

and computing the rotational velocity afterwards using

ω̂p,i =

∣∣∣∣(ûi − ûp,c)⊥

|rci|

∣∣∣∣ . (7)

This approach results in a solution ω̂p,i for each individual pixel covered by the particle. Subse-
quently, we found that the most accurate results for a representative angular velocity were com-
puted using the mode value of ω̂p,i for all particle-covered pixels. As will be discussed and shown
in Section 3.1.2, median and mean values lead to a systematic underestimation of ω̂p due to the
aperture problem. In summary, rigid body motion can be extracted from a dense motion field us-
ing Eq. (6) for the translational velocity and Eq. (7) for the angular velocity. A systematic study
exploring the capabilities of wOFV to extract these parameters for aspherical ellipses is reported
in Section 3.1.

2.3. Particle-resolved DNS and synthetic tracer image generation

Direct numerical simulation A prolate spheroid with an aspect ratio of 4 and an equivalent
diameter of Deq immersed in a turbulent carrier flow is investigated and compared to a highly-
resolved direct particle-fluid simulation (DPFS). For the particle-resolved reference simulation, a
finite-volume solver with hierarchically refined Cartesian meshes is employed. The solver has been
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validated in several studies (Hartmann et al., 2011; Schneiders et al., 2017; Fröhlich et al., 2020).
The inviscid fluxes are computed through an upwind-biased scheme, while a central scheme is
applied for the viscous fluxes. For the time integration, an explicit five-stage predictor-corrector
Runge–Kutta method is used (Schneiders et al., 2016). The computational cost of the simulation
is significantly reduced through adaptive mesh refinement, where the mesh is refined only in the
vicinity of the particle based on a distance sensor. The particle surface is sharply described by
a signed-distance or level-set function and discretized by means of a cut-cell method. Conser-
vation is ensured through a flux-redistribution technique that stabilizes the inherently small cut-
cells (Schneiders et al., 2016). As inflow boundary condition, a random eddy inflow method similar
to Batten et al. (2004) is implemented to provide realistic turbulent inflow conditions. Random ed-
dies are generated to match the specified inlet turbulence intensity of 10 %. Pressure is extrapolated
while the freestream value is prescribed for the density. Since there is no production of turbulence,
the turbulence intensity is decaying naturally along the streamwise direction. At the outflow, a
boundary condition of Neumann type is imposed to ensure that the flow exits without generating
spurious pressure waves back into the computational domain. For the lateral directions, periodic
boundary conditions are applied in the y- and z-direction, mimicking the simulation of an infinite
domain in these directions. The ellipsoidal particle is fixed at 15Deq downstream of the inlet until
statistical convergence for the flow field is reached. Then, the particle is released with the trans-
lational movement restricted to the xz-plane and the rotation restricted to the out-of-plane axis.
The grid resolution is selected such that Deq/∆min = 40 with a total of 288 million cells within a
domain of size (80Deq×20Deq×20Deq). Figure 2(a) shows a zoomed-in snapshot of the flow field,
highlighting the turbulent flow around the prolate spheroid.

Figure 2. Synthetic image generation from DPFS. (a) Center slice of a representative time-step of the DPFS with (b) a
corresponding snapshot of tracers positioned in the domain of interest. (c) Exemplary synthetic rendered multi-phase

Mie scattering image for motion estimation.
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Synthetic image generation To generate synthetic images from DNS data, the tracer particles
are randomly distributed in the domain to generate the first synthetic image. The motion of these
tracer particles for subsequent images is computed based on the velocities provided by the DNS
data set. Similar to Nicolas et al. (2023), the displacement of each particle in each second frame is
computed numerically using an explicit Runge-Kutta scheme, with linear interpolation applied to
the particle positions. The physical positions of the particles are then scaled to pixel coordinates to
fit within the image frame. Each particle is assigned maximum intensity values based on its out-of-
plane position within the laser sheet, ensuring that particles closer to the focal plane have higher
intensity values. The thickness of the laser sheet is characterized by σLS = 2.1, which corresponds
to a laser sheet thickness of 0.33 Deq or 50 µm for an equivalent particle diameter of 150 µm. The
size distribution of the tracer particles is adjusted to follow a log-normal distribution, ensuring that
the tracers cover approximately 2 pixels in size. The in-plane intensity distribution for each particle
is computed from the integral of a two-dimensional circular Gaussian distribution, modeling the
intensity spread of the particle within the image. The calculated intensity values are then scaled
and discretized to fit a 12-bit camera sensor. Finally, the images are padded to a square image size
of 2k × 2k with k ∈ N for wOFV processing.

3. Results and Discussion

3.1. Large particle motion estimation using wOFV

The first analysis focuses on the motion of large ellipsoidal particles using wOFV. The goal is to
assess how accurately wOFV can estimate the translational and rotational motion of the particles
by comparing the estimated motion parameters ûp and ω̂p with the ground truth values up and
ωp. Table 1 outlines the parameter settings for this study. Ellipsoids with an aspect ratio of 4 are
generated and randomly placed within a square domain. These particles are then moved accord-
ing to predefined constraints, and the contours are rendered on a pixel grid at two successive time
steps. The resulting image pairs are processed by the wOFV algorithm with different regulariza-
tion weights λ. Finally, the translational and rotational motions are estimated using the method
described earlier in Section 2.2.

3.1.1. Translational motion

To start with the simplest case, we examine purely translational motion. Here, single ellipsoids are
randomly placed in the domain and only translate in the image plane. The boundary conditions
listed in Table 1 apply except for the rotational motion, which is set to ωp = 0◦ for all particles.
Figure 3 shows the estimated translational velocity plotted against the ground truth for four λ

regularization weighting parameters. As can be seen, increasing values of λ lead to a better ap-
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Table 1. Parameters for the study of ellipsoidal particle motion tracked by wOFV. If not declared differently, all
numbers are given in units of pixels.

Parameter Value Processing Step

Number of image pairs 1000 Synthetic image generation
Image size 128 × 128 Synthetic image generation
Ellipsoid size a = 20, b = 5 Synthetic image generation
Initial centroid position [xc, yc] ∈ {x | 40 ≤ x ≤ 88} Synthetic image generation
Initial orientation ± 90° Synthetic image generation
up ± 0 – 12 Synthetic image generation
ωp ± 0° – 40° Synthetic image generation
Reg. scheme Laplacian wOFV
Reg. weighting λ {0.01, 0.1, 1, 10, 100} wOFV

proximation of the translational velocity of the ellipsoids over all displacement values. Notably,
for all λ values, the deviations from the ground truth are largely independent of the displacement
value. It was also observed that the wOFV algorithm consistently found an appropriate solution
as long as the particle images overlapped between frames. For cases where particle images do not
overlap, employing a simple centroid tracking algorithm before wOFV estimation can generate an
initial condition, effectively removing any limitations on the estimated translational displacement.

These observations can be explained by considering the nature of the flow field of a purely trans-
lational particle against a dark background. In such a scenario, the flow field is uniform in space,
meaning that gradients do not appear in an ideal solution between neighboring vectors in the
dense motion field. Consequently, higher values of the regularization weighting parameter λ en-
hance the accuracy of the tracking method by promoting smoothness in the estimated velocity
field. Therefore, for pure translational motion of a single object in the domain, it is advisable to
use a high value for λ. It should be noted, however, that this recommendation may change when
tracking multiple rigid bodies, even if their motion is purely translational. For our specific case
and given the range of observed values, the higher the λ, the better the performance of wOFV.

3.1.2. Rotational motion

Following the analysis of translational motion, we now examine pure rotational motion. Ellipsoids
are randomly placed in the domain and subjected to rotation without any translational movement.
Accordingly, the boundary conditions detailed in Table 1 are valid apart from the translational mo-
tion, which is set to up = 0 px for all particles. Figure 4 shows the estimated angular velocity plotted
against the ground truth for six regularization weightings λ. As indicated in the figure, the devia-
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jû
p
j/

p
ix

el

6 = 100

Figure 3. wOFV-based tracking of 1000 individual ellipsoids undergoing purely translational motion. Computed
translational velocity magnitude |ûp| compared to true velocity magnitude |up| for different regularization weighting

parameters λ.

tion between the estimated angular velocity ω̂p and the true angular velocity ωp increases with the
magnitude of the angular velocity. This effect is particularly pronounced for higher regularization
weighting parameter, where the underestimation of ωp becomes more significant.

The observed behavior can be attributed to the necessity of resolving velocity gradients in the
flow field of a purely rotating particle. Unlike translational motion, rotational motion inherently
involves velocity gradients around the center of rotation. When the regularization weighting pa-
rameter λ is set too high, these essential gradients are smoothed out, leading to inaccuracies in the
estimated angular velocity, particularly evident in an increasing underestimation of the angular
velocity as |ωp| increases. Conversely, setting λ too low can result in nonphysical outliers in the
vector field, causing a wider spread of samples, as observed for λ = 0.001.

The limit of wOFV regarding the maximum predictable angular velocity is not as clearly defined
as in the case of translational motion. For pure rotation, the overlap between the ellipsoid in suc-
cessive frames I0 and I1 is always guaranteed. However, the absolute error in angular velocity
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Figure 4. wOFV-based tracking of 1000 individual ellipsoids undergoing pure rotational motion. Computed angular
velocity magnitude |ω̂p| compared to the true angular velocity magnitude |ωp| for different regularization weighting

parameters λ.

estimation increases with the magnitude of the angular velocity. Furthermore, there is a threshold
angular velocity ωth above which the algorithm fails to provide meaningful predictions, especially
for high regularization values. The threshold ωth depends strongly on the regularization weighting
parameter λ. For example, the performance of the algorithm differs significantly between λ = 10

and λ = 100. To quantify ωth, one could iteratively compute a linear fit through the samples with
ωi < ωmax. By incrementing ωmax and evaluating the mean squared error (MSE) of the fit, ωth can
be identified as the value of ωmax where MSE exceeds a predefined maximum.

Given the results for ellipses with an aspect ratio of 4, it is interesting to investigate the effect of
varying the aspect ratio on the rotational motion estimation. Therefore, additional simulations of
ellipsoids with different aspect ratios but similar particle areas of A = 100π (in units of pixels) were
performed for all investigated λ values. A representative ellipse with identical initial orientation
and angular velocity but varying aspect ratio is shown in Figure 5(a-d) for a regularization weight-
ing parameter of λ = 10. Here, the distribution of the median relative error of the angular velocity
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estimation (ω̂p,i − ωp)/ωp = ∆ωp/ωp is shown on the surface of all ellipses examined. Regions of
underestimation are indicated by negative values, while positive values indicate overestimation.
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Figure 5. (a-d) Distribution of (ω̂p,i − ωp)/ωp = ∆ωp/ωp for ellipses with varying aspect ratios α for a true angular
velocity of ωp = −22.9°. (e) Median relative error over the aspect ratio for varying regularization weighting

parameters λ.

For all particles, a butterfly-shaped area of underestimation is visible, aligned with the main axes
of the ellipse. The relative size of this underestimation area to the total ellipse area increases with
decreasing aspect ratio α. This indicates that the underestimation of ωp is affected by the aspect
ratio, with higher aspect ratios improving the angular velocity estimate. Qualitatively, both the
magnitude of the underestimation and the ratio of the total area to the underestimated areas de-
crease with increasing aspect ratio.

The shape of the areas of underestimation is likely related to the aperture problem (Heitz et al.,
2010). This problem arises because borders of the particles closer to the particle centroid tend to
move less perpendicularly to their intensity gradient as the aspect ratio decreases. In the extreme
case of a circular particle (α = 1), the rotational movement cannot be detected by optical flow
methods due to the lack of distinguishable features. Consequently, particles with less smooth and
more ragged features than ellipsoids are expected to be tracked more accurately by the wOFV
method. Therefore, as the aspect ratio increases, the optical flow algorithm can better resolve the
angular velocity, reducing the underestimation.

To quantify this observation for different regularization weighting parameters, the median relative
error med(∆ωp/ωp) is plotted in Figure 5(e) for different aspect ratios and regularization weighting
parameters. It can be observed that for all λ values the error decreases with increasing aspect ratio
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and reaches its minimum at α = 6 or 7. Furthermore, for α = 2, all λ ≤ 10 predict the angular
velocity with approximately the same accuracy. The best performance is achieved at λ = 10, which
is the best regularization weighting parameter across all aspect ratios. This suggests that while
aspect ratio affects the accuracy of angular velocity estimation, the choice of λ can be made ro-
bustly, ensuring reliable performance of the wOFV method across a range of particle shapes. Such
consistency is crucial for applications involving a variety of particle geometries, as it simplifies
the parameter tuning process and increases the versatility of the method. The results computed
with the highest regularization, λ = 100, differ from the other results. This behavior is caused by
over-regularization, which results in oversmoothing of the gradients across the particle, which is
especially necessary for computing large angular velocities for particles with small aspect ratios.

3.1.3. Combined translational and rotational motion

Finally, the combined motion of simultaneous translation and rotation is examined. In the previous
sections, separate conclusions were drawn for translational and rotational motion. However, in
order to reliably use wOFV in practical applications, it is necessary to increase the complexity of
the synthetically generated data. Therefore, in this section we study the combined translational
and rotational motion of ellipses. For other parameters, the reader is referred to Table 1.

Taking into account the previously discovered limitations of the algorithm, the displayed results
only include samples where the ellipses in I0 and I1 overlap. We begin by investigating how the
translational accuracy is influenced when it is overlaid with rotation. In Figure 6, the relative end-
point error eep, described by

eep =

√
(ûp − up)

2∣∣up

∣∣ , (8)

is depicted for translational and combined movements.

It can be observed that eep remains comparable for both cases up to a maximum regularization
of λ = 10. Only at λ = 100 does the error of the combined motion significantly increase, while it
continues to decrease for the translational test case. In addition, it is observed that at high regu-
larization the endpoint error is strongly correlated with the magnitude of the angular velocity. In
other words, the larger the superimposed rotational motion, the larger the error in the predicted
velocity ûp. This behavior can be explained by considering the optimal regularization weighting
parameter λ for pure translation, which is theoretically infinite due to the lack of required velocity
gradients. However, when rotation is superimposed on translation, a gradient across the particle
is expected, which must be captured by wOFV. Therefore, the choice of λ is limited, as observed
earlier in Figure 4 for pure rotation. For combined motion, the translation error increases with the
magnitude of the angular velocity because the velocity gradient across the particle becomes more



21st LISBON Laser Symposium 2024

0.01 0.1 1 10 100

6

0.01

0.1

1

10

100

ee
p

/
%

0

5

10

15

20

25

30

35

!
p

/
/

Translation
Combined
Median

Figure 6. Evolution of the relative endpoint error distribution for increasing values of the regularization weighting
parameter λ. Individual data points of N = 1000 samples are colored based on the angular velocity ωp.

pronounced and must be accurately captured by the wOFV algorithm. Thus, while a higher λ may
smooth out noise, it also runs the risk of oversmoothing critical gradients, leading to increased
errors of translation motion estimation in cases of significant overlaid rotational motion.

After examining the translational accuracy, the rotational accuracy during combined motion is ex-
amined. These results are shown in Figure 7. Notably, the median relative error for all regulariza-
tion levels is comparable to the pure rotational test case, and the error distribution is independent
of the magnitude of the superimposed translational motion. For small levels of regularization, the
median results are comparable across test cases, with a higher spread of results for smaller λ val-
ues, similar to pure rotational motion. However, for λ ≥ 10 the error increases significantly. This
indicates that while the wOFV algorithm performs well with low regularization for combined mo-
tion, higher regularization adversely affects the accuracy of rotational motion estimation due to
the oversmoothing of necessary gradients.

In summary, the analysis of large particle motion using wOFV has revealed several important in-
sights. For purely translational motion, higher regularization values λ significantly improve the
accuracy of velocity estimation, provided that the particle images overlap between frames. This
is due to the uniform nature of the flow field in translational motion, which benefits from the
smoothing effect of higher regularization. In contrast, for purely rotational motion, the presence of
velocity gradients around the center of rotation requires a careful balance in the choice of λ. Higher
regularization leads to an underestimation of the angular velocity, while lower regularization can
introduce non-physical outliers. The aspect ratio of the ellipsoids also plays a crucial role, with
higher aspect ratios improving the accuracy of the angular velocity estimation by reducing the
areas of underestimation caused by the aperture problem. Finally, in the case of combined transla-
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Figure 7. Evolution of the relative rotational error distribution for increasing values of the regularization weighting
parameter λ. Individual data points of N = 1000 samples are colored based on the translational velocity
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∣∣.
tional and rotational motion, the results highlight the challenge of capturing both types of motion
simultaneously. While wOFV performs well with low regularization, higher λ values lead to in-
creased errors due to oversmoothing of critical velocity gradients. Overall, these results emphasize
the importance of selecting an optimal regularization weighting parameter that balances the need
for smoothness and the preservation of essential motion gradients, especially in complex motion
scenarios involving both translation and rotation.

3.2. Multi-phase flow velocimetry analysis using DNS ground truth data

After analyzing large particle motions, we now investigate the ability of wOFV to extract turbulent
flow fields in the vicinity of an aspherical particle from synthetic tracer images. Previous investi-
gations have demonstrated the superior performance of wOFV over PIV using DNS ground truth
data in homogeneous isotropic turbulence (Schmidt & Sutton, 2019) and wall-bounded turbulent
flows (Nicolas et al., 2023). Recently, the authors applied wOFV to determine the turbulent flow
surrounding walnut shell particles emerging from a turbulent round jet, where λ was chosen by
verifying the correct physical reconstruction of the measured turbulent spectra due to the lack of
a ground truth comparison (Geschwindner et al., 2024). However, the use of wOFV to determine
the flow field around a dispersed particle, including a comparison to DNS-derived ground truth
data, has not been reported. For this analysis, we use the DPFS data described in Section 2.3.

To render the DNS data, realistic experimental conditions were replicated (Geschwindner et al.,
2023). The equivalent particle diameter was set to Deq = 150 µm, with a pixel resolution of 5 µm/px
in the final rendered image with dimensions of 390 ×150 px. The final particle density was set to
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0.1 ppp (particles per pixel) based on the optimal value for wOFV reported in (Schmidt & Sutton,
2019). The ground truth was rendered assuming a laser light sheet thickness of 50 µm. The ellipse
image was not included in the tracer images processed with wOFV and PIV as these are usually
masked out using image discrimination algorithms (Khalitov & Longmire, 2002). Given the initial
particle Reynolds number of approximately 1000, the movement of the ellipse was significantly
slower than the fluid movement. This setup provides a preliminary assessment of the performance
of wOFV and PIV in a multi-phase scenario without substantial simultaneous movement of the
dispersed and carrier phases between frames. Future studies will explore this with lower Reynolds
numbers.

In the following, an exemplary analysis of one vector field from DNS and its accuracy based on
synthetic data is presented. Figure 8 compares the rendered ground truth, PIV with an optimal
interrogation window size of w = 12 px using an overlap of 75 % (processed in Lavision Davis
10.2), and wOFV with an optimal setting of λ = 0.33. These optimal settings are derived from error
calculations, which will be discussed in detail in Fig. 9.
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Figure 8. Comparison of flow fields in the u1 (left column) and u2 (right column) directions obtained from DNS (a, b),
PIV with an interrogation window size of w = 12 px (c, d), and wOFV with λ = 0.33 (e, f). Axis units are in pixels.

Both wOFV and PIV effectively capture the wake behind the particle under optimal conditions and
show comparable flow fields, with wOFV showing slightly better resolution. This improved reso-
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lution is particularly evident in the wake region, where vortices detach from the ellipsoid. While
particle masking in PIV leads to unresolved structures near the particle surface, wOFV qualita-
tively reconstructs parts of the very thin boundary layer near the particle surface. This includes
capturing the stagnation point at the leading tip of the ellipsoid and the flow along the elongated
parts of the ellipsoid surface. The superior resolution of wOFV is easily seen in the dense motion
field, as particularly well illustrated in Fig. 8(f) compared to Fig. 8(b), highlighting the clear advan-
tage of wOFV over PIV. Future work will need to confirm these results when the ellipsoid motion
is not negligibly small, especially for lower slip velocities and particle Reynolds numbers.

To quantitatively compare the performance of wOFV and PIV, the endpoint error distribution,

EEi =
√
(û1,i − u1)2 + (û2,i − u2)2, (9)

and the normalized root mean square error (RMSE),

εu =

√
1

nv

∑
i

(û1,i − u1)
2 + (û2,i − u2)

2

u2
1 + u2

2

, (10)

where nv denotes the number of vectors per image, have been computed as shown in Fig. 9. For
wOFV and PIV, the same masking of the particle and boundary regions was applied to ensure a fair
comparison by excluding vectors close to the particle (ensuring that the same regions of the flow
field are statistically compared). The highest values for EE are observed in the detachment zone
directly behind the particle and in its wake where high flow gradients and vortices are present.
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Figure 9. (a, b) Spatial distribution of the endpoint error EE for PIV and wOFV at an optimal value of λ = 0.33. (c)
Normalized root mean square error εu for PIV and wOFV with respect to the regularization weighting parameter λ.

Fig. 9(c) shows εu for a wide range of λ values, with an optimum found at λ = 0.33. Notably,
wOFV outperforms the PIV calculations using w = 12 px within the λ range of 0.14 to 0.66, with
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an optimal value at 0.33. For PIV, different interrogation window sizes were investigated. It is
apparent that decreasing the window size from 24 px to 12 px significantly lowers RMSE. However,
further decreasing the window size of PIV to 8 px increases the error again, likely due to the lack
of sufficient particles in the PIV correlation calculations. Even under optimal PIV settings, in the
absence of image noise and with perfectly lit particles, wOFV outperforms PIV both quantitatively
in providing more accurate results and qualitatively by resolving structures close to the particle
surface. Future studies with lower slip velocities will examine this in more detail.

4. Conclusions

This study presented an evaluation of wavelet-based optical flow velocimetry (wOFV) for mo-
tion estimation of multi-phase flows. Here, the motion of dispersed ellipsoidal particles and their
surrounding turbulent carrier flow were processed and studied based on synthetically generated
image data.

In the first part of our work, the rigid motion of dispersed ellipses, consisting of translational and
rotational components, was systematically evaluated from wOFV-generated dense motion fields.
The results demonstrated the critical role of the regularization weighting parameter λ in accurately
capturing the motion of elliptical particles. Higher values of λ improved translational motion es-
timation, while an optimal regularization weighting parameter setting for rotational motion was
found that balanced under-regularization and the appearance of non-physical structures, as well
as the over-blurring of gradients at high λ values, which must be avoided since the accurate cap-
ture of rotation inherently involves the resolution of a velocity gradient across the particle. The
effect of aspect ratio on the accuracy of rotational motion estimation was highlighted, with higher
aspect ratios resulting in less underestimation of angular velocity. In addition, wOFV maintained
its accuracy in scenarios involving combined translational and rotational motion, especially when
optimal regularization weighting parameters were used. The algorithm effectively resolved veloc-
ity gradients, which are critical for capturing combined motion.

The second part of the study aimed to capture the motion of the carrier phase turbulent flow
surrounding an aspherical particle using wOFV, benchmarked with DNS data and compared to
the state-of-the-art PIV. In this comparison, wOFV outperformed PIV in capturing finer structures
near the particle surface and accurately representing the wake region. The superior resolution
of wOFV was particularly evident in the dense motion fields, providing more accurate results
even under ideal PIV conditions. Quantitative evaluations using endpoint error and normalized
root mean square error analyses confirmed the advantage of wOFV over PIV. The performance of
wOFV was optimal within a certain range of regularization weighting parameters.

In conclusion, wOFV proved to be a powerful tool for the analysis of multi-phase flow dynamics,
offering higher resolution and accuracy compared to PIV, especially in complex flow scenarios in-
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volving aspherical particles. Future studies focusing on lower slip velocities and varying Reynolds
numbers will further elucidate the potential of wOFV in such applications. Furthermore, the simul-
taneous capture of multiple aspherical particles within an image frame represents an interesting
extension of the scenario presented in this work.
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Nomenclature

a Semi-major axis of the ellipse [px]
b Semi-minor axis of the ellipse [px]
Deq Equivalent particle diameter
EE Endpoint error [px]
I(x, t) Brightness intensity at position x and time t

JD Data term of the penalty function
JR Regularization term of the penalty function
k Image size exponent for padding
nv Number of velocity vectors
rci Vector from position i to the center point [px]
u Velocity vector [px]
û Estimated velocity vector [px]
up Particle velocity vector [px]
ûp Estimated particle velocity vector [px]
u1 Velocity component in the x-direction [px]
u2 Velocity component in the y-direction [px]
εu Normalized root mean square error (RMSE)
w Interrogation window size [px]
xc, yc Coordinates of the centroid [px]
α Aspect ratio of the ellipse
λ Regularization weighting parameter
ωp Angular velocity of the particle [°]
ω̂p Estimated angular velocity of the particle [°]
θ Wavelet coefficients
Ψ Discrete wavelet transform (DWT)
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σLS Thickness of the laser sheet [µm]
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