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ABSTRACT

Flow characterization by means of Particle Tracking Velocimetry (PTV) has gained significant importance in recent 

years. This is especially true in microfluidics, where the limited optical access only allows the use of one c amera. A 

commonly used technique is the Astigmatism Particle Tracking Velocimetry (APTV), which provides reliable 3D3C 

velocity measurements. However, for APTV and tracking approaches in general, the resulting data is available on 

scattered points and usually requires interpolation onto regular grids for further processing. In this work, we test 

Radial Basis Function (RBF) with the Partition of Unity Method (PUM) for the regression and mesh-free derivative 

evaluation in dense velocity fields. The RBF-PUM approach is first benchmarked on a synthetic test case against the 

classic adaptive Gaussian Window interpolation (AGW) and global RBF. Then, we test the RBF-PUM approach on a
three-dimensional experimental dataset consisting of 5 × 105 data points in a vortex flow. The results prove that the 
RBF-PUM allows for accurate regression at accessible computational costs.

1. Introduction

Recently, Lagrangian three-dimensional particle tracking for flow characterization has gained much
attention (Kähler et al., 2016). In microfluidics, where the optical access is limited, different tech-
niques based on particle defocusing have been proposed as multi-camera set-ups are usually not
feasible. Among these, astigmatism particle tracking velocimetry (APTV) allows the measurement
of all three velocity components using only one camera (Cierpka et al. (2010)). As is typical for
tracking approaches, the resulting velocity data is scattered due to the nature of the particle track-
ing and often extends up to 106 data points for a sufficient spatial resolution of the observed flow.

For further analysis, such as the computation of derivatives, vortex detection, or pressure compu-
tation, classic methods require further data processing (Cierpka & Kähler, 2012) and often interpo-
lating the data onto a regular grid in a postprocessing step. A common approach to achieve this
is the adaptive Gaussian window interpolation (AGW, Agüí & Jiménez (1987)). However, the ac-
curacy of interpolating algorithms depends mainly on the number of velocity vectors, the amount
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of noise in the measured data, and the interpolating grid’s resolution. In general, weighted inter-
polation suffers in poorly sampled regions that must be interpolated onto fine grids. Furthermore,
the subsequent computation of spatial gradients using central differences introduces additional
uncertainties and truncation errors.

A way to circumvent these limitations is to use a regression via Radial Basis Functions (RBFs),
allowing for deriving a differentiable regression function that enables computing both the velocity
fields and their derivatives (see Fornberg & Flyer (2015)) in an arbitrary grid. In recent years,
RBF-based regression has also been applied in experimental fluid mechanics to either enhance the
resolution of the velocity field or compute spatial derivatives (Casa & Krueger (2013); Karri et al.
(2009); Ratz et al. (2021)). Current work includes the meshless computation of the pressure fields
(Sperotto et al. (2022a,b)) using RBF regressions that are constrained by differential equations (e.g.
solenoidal fields in incompressible flows) and appropriate boundary conditions.

The main limitation of the RBF-based regression is the numerical stability and the high computa-
tional cost from large datasets. While the numerical stability can be enforced using appropriate
regularization (Larsson et al., 2013), the regression problem leads to large and dense linear sys-
tems that have considerable memory demands for realistic 3D datasets. The computational load
can be decreased using the Partition of Unity Method (PUM, Larsson et al. (2017)), which consists
in splitting the regression of large datasets into smaller portions (partitions). However, depending
on the setting of the RBF regression, overlapping regions between partitions can introduce sig-
nificant errors in the regression. In this work, we analyze the capability of RBF-PUM regression
to handle noisy and large datasets and analyze the impact of partitioning on the accuracy of the
regression for various RBF parameters. The method is first benchmarked on a synthetic test case,
for which the ground truth is available, and then tested on a three-dimensional vortex structure
obtained by volumetric APTV measurements in a microchannel. Section 2 briefly introduces the
RBF-based regression and its extension to the PUM formulation. Section 3 reports on the testing of
the RBF-PUM formulation on a 2D synthetic test case featuring the well-known Lamb-Oseen vor-
tex, while Section 4 reports on the application to the experimental measurements of a 3D vortex
flow. Conclusions and outlooks are given in Section 5.

2. The RBF-PUM Approach to Velocity Regression

The RBF-based regression consists in approximating the velocity field as a linear combination of
Radial Basis Functions (RBFs). Assuming that a total of nR RBFs are placed in the measurement
domain, the goal of the regression is to find the weights wi,k which map the basis functions onto
the velocity field, i.e.:

ui(x0) =

nR∑
k=1

wi,kϕk(x0|xk, σk), (1)

where the ϕk are the radial basis functions with collocation points xk and shape factor σk, and ui is
the i-th velocity component sampled on a set of nS points x0. In the case of PTV, these points are
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scattered randomly over the domain while in the case of classic cross-correlation based velocimetry
these are available on a regular grid.

In this work we consider isotropic Gaussians with equal shape (σk = σ) as RBFs, that is

ϕk(x0|xk, σ) = exp
(
−||x0 − xk||22

2σ2

)
, (2)

where || • ||2 denotes the l2 norm in the spatial domain (R2 in planar velocimetry and R3 in 3D
velocimetry). Considering the simplest case with no differential constraints imposed during the
regression, the computation of the weights wi,k can be done independently for each of the i-th
velocity components. More specifically, the set of weights can be computed solving a linear system
arising from a least square problem.

Reshaping the basis functions as columns of a matrix Φ(x0) ∈ RnS×nR , collecting the weights wi,k

into a column vector wi ∈ RnR and the i-th velocity component in x0 as ui(x0) ∈ RnS , the RBF
approximation reads ui(x0) = Φ(x0)wi. The linear system for the least square problem reads:

Awi = bi with A = ΦT (x0)Φ(x0) ∈ RnR×nR and bi = ΦT (x0)ui(x0) ∈ RnR . (3)

Provided that the collocation points wk and the shape factors are properly chosen, the matrix A

is (almost) positive definite. Since this condition is hardly met in practice, a gentle regularization
A ← A + αI is usually introduced, with α ∈ R and I the identity matrix of appropriate size. In
this work, we consider a regularization based on the infinity norm as suggested by Sperotto et al.
(2022a). Then, the system (3) can be solved using a Cholesky decomposition A = LLT , with L a
lower triangular matrix. One should note that only one decomposition is needed since the system
matrix is the same for all velocity components.

Once the weights are computed, equation (1) can be used to evaluate the velocity field on any grid
(structured or unstructured) and to provide derivatives analytically, by differentiating the RBFs.
Given x ∈ Rn′

s a new set of points at which the velocity is to be predicted, one has ui(x) = Φ(x)wi,
with Φ(x) ∈ Rn′

s×nR the basis matrix evaluated at the new points.

The main limit of the approach is that the matrix A is dense and thus requires large memory in the
case of large datasets. These requirements can be significantly reduced using the Partition of Unity
(PUM) approach. The underlying idea of the PUM, as sketched in Fig. 1(a), is to split the regression
into smaller partitions and solve it in each partition separately. Denoting the measurement domain
as Ω, we define P overlapping patches, active in portions Ωj , such that ∪P

j=1Ωj ⊇ Ω. These patches
are taken as circles in a 2D domain and spheres in a 3D domain. Similarly to the RBFs, each patch
is characterized by its position and radius r. In this work, we control the radius of the patches
by an overlap parameter δ. Considering regularly spaced circles on a grid with spacing ∆x and
denoting as r∗ =

√
2∆x2 the minimal radius required to cover the whole domain, we compute the

patch’s radius as r = r∗(1 + δ). The overlapping δ is thus an important parameter that is analyzed
in the following sections.
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(a) (b)

Figure 1. Illustrations for the PUM. (a) Layout of the circular patches Ωj in two dimensions to cover the whole
measurement domain Ω. (b) Local sketch of the intersection of four circles to explain the patch overlap.

Each patch is identified by a weight function Wj(x) which is approximately unitary in Ωj and zero

outside and it is such that
∑P

j=1
Wj(x) = 1, ∀x ∈ x0. Applying Shepard’s method (Shepard (1968))

of using compactly supported generating function φj(x), the weight functions are:

Wj(x) =
φj(x)∑P

m=1 φm(x)
. (4)

An example of compactly supported generating function is the C2 Wendland function (Wendland,
1995) φ(r) = (4r + 1)(1 − r4)+, where the subscript + denotes that only the positive part is taken,
i.e. (x)+ = x if x > 1 and 0 otherwise.

Once the regression in each patch is computed, the regression of the global velocity field is taken
as a weighted combination of the individual fields, i.e. :

ui(x) =
P∑

j=1

Wj(x)ui,j(x), (5)

where ui,j(x) is the regression of the component i in the patch j. In practice, we require an overlap
parameter δ > 0 to ensure all points are resolved on the new grid x. Because the approach acts as an
interpolant in the overlapping regions, these represent a critical area for the regression, especially
if these occur in regions where the velocity field features large gradients.

3. Synthetic Test Case

We consider a classic benchmark problem, namely the 2D Lamb-Oseen vortex in a square domain
of [−250, 250]× [−250, 250] px. In radial coordinates, denoting with r the (radial) distance in pixels
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Figure 2. Results for the Lamb Oseen vortex with no noise and 104 points. (a) Ground truth of the vorticity with the
scattered data. Local errors in vorticity after the regression for the (b) AGW (c) RBF global (d) RBF-PUM. The

subcaptions show the reconstruction error.

from the image center, the angular velocity is set to vθ = (1 − e−r2/a)/(r + ε), with ε = 10−10 and
a = 103. This yields a maximum displacement, between two consecutive snapshots, of 3.2 px
at r = 112.2 px. A total of 104 sampling points are considered, randomly scattered through the
image to simulate seeding particles. Figure 2(a) shows the an example snapshot from the vorticity
field with a quiver plot of the velocity. Here, only one data point only every ten is plotted for
visualization purposes.

We compare the performance of the RBF-PUM to a global RBF regression and an AGW interpola-
tion. We define the reconstruction error ωerr of the vorticity as:

ωerr =
||ωgt(xg)− ωreg(xg)||2

||ωgt(xg)||2
, (6)

where || • ||2 is the l2 norm of a vector, xg is a structured grid of 63 × 63 points, ωgt the analytical
vorticity field of the flow and ωreg the regressed vorticity field from either of the interpolation
methods.

For the AGW interpolation, we choose regression regions of size 40 × 40 px with an overlap of
80%. We apply a relatively strong filter by removing vectors in a regression region whose velocity
components differ by more than the square root of two standard deviations from the median in
the given regression region, i.e.

√
2 Var(ui), as is usually done (Sachs, Cierpka, & König, 2022).

The choice of collocation points for the RBF regression is not straightforward as many methods
exist to determine the position and shape parameter for each RBF. However, one approach often
taken is to place collocation points randomly and then choose the shape parameter based on the
average distance between them (Schneiders & Scarano, 2016). However, this choice of the shape
parameter does not consider the physics of the flow. For example, a flow with a relatively low
spatial frequency tolerates larger shape parameters because there is no need to represent spikes or
sharp gradients. In this work, we heuristically chose the shape parameter equal to twice the grid
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spacing h. Using a total number of 1250 collocation points, this yields σ = 2 h ≈ 63 px. For the
RBF-PUM, we choose a total number of 25 patches. The overlap parameter δ is 0.2 as proposed in
the initial work (Larsson et al., 2017).

The local absolute errors for the AGW, global RBF and RBF-PUM are shown in Fig. 2(b), 2(c) and
2(d) respectively. The subcaptions show the reconstruction error in each case. We also want to
emphasize the scale of the colorbars showing the error. For the AGW, the absolute error is two
orders of magnitude larger than in both cases of the RBFs. Moreover, the AGW error is larger in
regions of large velocity gradients, i.e. in the center of the domain, while the error in both RBF is
more uniform and mainly influenced by the domain’s boundaries.

This is particularly evident in the RBF-PUM, as the footprint of the PUM’s patches is visible in the
error landscape. Increasing the number of patches does not yield appreciable changes in the global
error, which remains comparable to the global RBF.

In terms of computational cost, the RBF regression requires the solution of a linear system of size
nR × nR which is assembled at a cost of n2

RnS . In the global RBF, we have nR = 1250 and nS = 104

while in the PUM-RBF we have P = 25 systems of size nR = 110 and nP = 874. On an Intel
i7-4790K CPU with 4GHz, the computation time on a python platform was 1.8 s for the global RBF
and 0.35 s for RBF-PUM. Going to higher seeding concentrations rapidly increases this difference.
In these cases, only the RBF-PUM can be applied and the results on clean data show that it yields
very comparable results to the global RBF regression.

Another aspect to consider is that experimental data is inherently noisy. While noise has been
considered in the past (Li et al., 2021), it was only for the case of lower seeding concentrations and
PTV setups, which have an uncertainty in the particle center location below 0.1 px. In a recent
investigation of Barnkob et al. (2021), the uncertainty for the in plane location was estimated to be
below 0.7 px for noisy and densely seeded images. Although it was not reported to what extent
this value depends on the repositioning accuracy of the stage used by the authors, we take this
value as a lower bound for the following investigation. Assuming a displacement between two
frames to be ≈ 20 px, we consider random Gaussian noise with a standard deviation of 5% of the
corresponding velocity. We also add random spikes into the velocity field, simulating the effects
of mismatched particles. For this, 0.5% of the data points have their velocity multiplied with a
factor of 10 and random noise taken from a uniform distribution. As we now want to investigate
the effect of even larger data densities, we take a total of 5 × 104 randomly placed data points.
We apply a small preprocessing step by removing sharp outliers with a normalized median filter
(Westerweel & Scarano, 2005) that has been extended to PTV data (Sachs, Baloochi, et al., 2022) to
remove some of the spikes and noise. For the given case, 495 of the data points were removed in
this way. Nevertheless, not all of them contain spikes.

To see how the RBF regression performs in this case Fig. 3(a) shows the reconstruction error for
different combinations of overlap δ ∈ [0.1, 0.9] and shape parameter σ ∈ [35, 125] px. The number
of collocation points and patches is the same as for the case without noise. As we can see, the
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(a) (b) ωerr = 2.77% (c) ωerr = 12.34%

Figure 3. Test Case of the Lamb-Oseen vortex with gauss noise, spikes and 5× 104 data points. (a) Overlap over
sigma showing that flatter RBFs are prefered. Absolute Error in the vorticity for the RBF-PUM and AGW (c).

error has increased by an order of magnitude compared to the case without noise in Fig. 2(d). The
figure shows that larger shape parameters are beneficial for noisy data. This is not surprising, as
flatter Gaussians lead to a higher degree of smoothing. Furthermore, increasing the overlap only
results in minor improvements, regardless of the shape parameters. One reason for this could be
the aforementioned smoothing produced by (4) that occurs for large overlaps. However, the ben-
efit is much smaller than compared to varying the shape parameter. Larger overlaps also increase
the computational cost, e.g. for δ = 0.1 and 0.9, the regression time is 0.44 s and 3.22 s, respec-
tively. While this is still relatively short, the computational cost increases for larger datasets in
three dimensions and if more collocation points are chosen for more complex flows.

Using this knowledge, we compare the performance of RBF-PUM with δ = 0.3 and σ = 105 px
with AGW. The results are shown in Figure 3(b) and 3(c), the subcaptions show the reconstruction
error. The RBF-PUM still performs better than the AGW with a reconstruction error of ωerr = 2.77%

compared to 12.34%. However, the difference is not as significant as for the case without noise. It
is worth mentioning that the AGW performs better than in the case without noise, which is to be
expected as the number of points also increased. This results in better averaging in the regression
regions, and noise is removed very well due to the inbuilt filtering of the algorithm. Nevertheless,
RBF-PUM has a smaller error and allows computing gradients analytically.

4. Experimental Data

The RBF-PUM is now applied to real APTV measurements and compared to the AGW. The con-
figuration of interest is a microchannel made of polydimethylsiloxane (PDMS) with a rectangular
cross-section of about 500µm in width and height. A sketch is shown in Fig. 4. The channel
is placed on 128◦ YX LiNbO3 on which two interdigital transducers (IDTs) are deposited. These



20th LISBON Laser Symposium 2022

Figure 4. Sketch showing the experimental setup of the channel that is tilted by Θ with respect to the IDTs.
Counter-propagating surface acoustic waves are excited on the piezoelectric substrate of LiNbO3.

are used to excite two counter-propagating surface acoustic waves (SAWs), which superimpose
to form a standing wave field within the fluid. Due to the viscous damping of the radiated bulk
acoustic waves, a stationary vortex is induced. A detailed explanation of the involved physi-
cal mechanisms, the electronic devices and the experimental setup is given in (Sachs, Cierpka, &
König, 2022; Sachs, Baloochi, et al., 2022). Here, the channel’s position is slightly modified to in-
clude a tilting angle of Θ = 6◦ between the IDTs and the channel. The SAWs had a wavelength of
90µm and the applied power (PowerSAW generator, BelektroniG GmbH) was set to≈ 29.5mW. In
total, 3.8 × 105 valid vectors are found inside the measurement volume, which covered the whole
channel cross-section and about 800µm in the main flow direction.

For the AGW, cube-shaped regression regions with a side length of 40µm and an overlap of 50%
are chosen, yielding a grid of 23 × 37 × 26 points along x, y, z. For the RBF-PUM, the results from
Section 3 are taken into consideration. We placed 2600 collocation points in our measurement
volume and the RBFs cover a wide domain with σ = 125µm. The number of spheres is 5 × 7 × 5

along x, y, z and the overlap is set to δ = 0.2.

Fig. 5(a) shows a vertical slice of the y−component of the velocity field, obtained by sampling valid
velocity vectors in the region y ∈ [405, 415]µm. The contourmap shows noise from the experiments
and a lack of data on the channel cross-section’s top right and left corners. Here, no valid vectors
were found.

Fig. 5(b) and 5(c) shows the same velocity component after reconstruction at y = 410µm for
the RBF-PUM and AGW, respectively. The RBF-PUM yields a smooth velocity field that appears
symmetric whereas the AGW has some issues, especially towards the top right corner. The lack of
data points in this region leads to a velocity field that appears to be still noisy.

The resulting vortex is illustrated in Fig. 6. The vortices are highlighted by isosurfaces of the Q-
field (Hunt et al., 1988) with a threshold of 2 s−2 and streamlines, colored according to the velocity
component v in main flow direction. The derivatives for the AGW are calculated with central
differences and analytically for the RBF-PUM. The results obtained with RBF-PUM are shown on
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(a) (b) (c)

Figure 5. Slices of the velocity field in y-direction. Fig (a) Scattered data taken from y ∈ [405, 415]µm. Fig (b) and (c)
Velocity field after the regression at y = 410µm for the RBF-PUM and AGW respectively.

the left-hand side and with AGW on the right-hand side, each from a three-dimensional view in
the top row and a top-down view in the bottom row. The colorbar of the streamlines is identical
for each case and chosen with manual thresholds of −1500µms−1 and 3000µms−1. The resulting
isosurfaces look very similar for both regression methods, with small outliers present towards the
walls in both cases. For the AGW, this can be traced back to a lack of points in these regions, and for
the RBF-PUM the lack of boundary conditions. Furthermore, more streamlines are retained for the
RBF regression at the same seeding concentration, which gives a more detailed representation of
the flow field. Nevertheless, both regression methods clearly show the tilt of the vortex due to the
angle between the IDTs and the channel. This effect can also be seen in the tilt of the streamlines.

5. Conclusions and Perspectives

Radial Basis Function regression has been successfully applied to large, three-dimensional data.
To limit the computational cost of a global regression, the Partition of Unity Method has been
used. The results of a synthetic test case show that both methods yield similar errors and vastly
outperform the adaptive Gaussian window interpolation. Furthermore, RBF-based methods have
the key advantage of providing an analytical expression of the velocity field. This allows the
analytical computation of spatial derivatives.

However, strong noise reduces the performance of the RBF-PUM. Nevertheless, with the correct
choice of the hyperparameters, the RBF still outperforms the AGW. Both methods were then ap-
plied to a three-dimensional vortex and showed a good agreement. The RBF-based methods can
further be improved by including boundary conditions such as the no-slip condition.
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(a) (b)

(c) (d)

Figure 6. Three-dimensional flow field visualization of the SAW-induced vortex using streamlines and isosurfaces
(grey) of the Q-field with a threshold of 2 s−2. Side view of the vortex obtained from the RBF regression (a) and the

AGW interpolation (b). Top-down view of the vortex for the RBF regression (a) and AGW interpolation (b). The
colorbar is the same for both interpolation methods.
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