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ABSTRACT 

In this work, we extend the analysis of Lagrangian Particle Tracking (LPT) and Data Assimilation (DA) algorithms, 

presented at the ISPIV21 conference, to the case of a turbulent wall-bounded flow interacting with a moving panel. 

The work is conducted within the European project HOMER and the data is processed by the partners of the project 

consortium. A synthetic experiment is performed that reproduces the air flow around a cylinder in ground effect, 

whereby a flexible panel is placed undergoing periodic oscillations. The database comprises two different panel's 

materials, namely metal and rubber, different marker densities on the panel’s surface and different concentrations of 

tracer particles in the flow. Images of the flow tracers and of the surface markers are acquired either with a four-

camera volumetric imaging setup or with a dual setup composed of four LPT cameras and two Digital Image 

Correlation (DIC) cameras. Additionally, three image acquisition modes are simulated, namely time-resolved, two-

pulse and four-pulse. The data are analyzed in terms of percentages of correctly reconstructed, missed and ghost 

particles, errors of the measured particles’ positions, velocities and accelerations (LPT analysis) and errors of the 

reconstructed flow fields, panel’s positions and surface pressures (DA analysis). 

 

1. Introduction 

In the last three decades, Particle Image Velocimetry (PIV) has evolved into the chief technique 

for fluid flow measurements. While the introduction of tomographic PIV (Elsinga et al., 2006) 

first enabled three-component flow velocity measurements in three-dimensional domains, the 

advent of time-efficient Lagrangian Particle Tracking (LPT) algorithms greatly reduced the 

computational time while allowing for more accurate reconstructions of the three-dimensional 

particles distributions at relatively high seeding densities (Kähler et al., 2016; van Gent et al., 

2017). One of the most commonly used LPT algorithms is the Shake-The-Box (STB) approach 

introduced by the DLR group (Schanz et al., 2016), together with its evolutions for multi-pulse 

multi-exposure measurements (Novara et al., 2016, 2019). The STB algorithm relies on the 

Iterative Particle Reconstruction (IPR, Wieneke, 2012, Jahn et al., 2021) and makes use of the 

temporal information to predict and correct the particles’ positions at successive time instants. 
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Alternative approaches to STB have been proposed where the particles’ correction phase 

(“shaking”) is conducted via the ensemble technique, as discussed in Yang et al. (2018), or via 

Kernel methods as in the Kernelized Lagrangian Particle Tracking technique (KLPT, Yang and 

Heitz, 2021). To enhance the initialization of new tracks, an approach that leverages on the 

identification of Lagrangian Coherent Structures (LCS) has been recently proposed by Khojasteh 

et al. (2021). The ETH Zurich group tackled the problem of particles reconstruction via the joint 

minimization of an energy function that accounts for the disparity between reconstructed 

particles and image recordings, while guaranteeing the sparsity of the reconstructed particles 

field (Lasinger et al., 2018, 2019). Some of these approaches have been comparatively assessed in 

the first Lagrangian Particle Tracking challenge, whose main results are discussed in 

Sciacchitano et al. (2021a). Applications of LPT techniques for simultaneously tracking the 

motion of flexible structures and of the flow tracers have been recently reported in the literature, 

mainly conducted within the framework of the European project HOMER (Mertens et al., 2021a, 

2021b). 

The knowledge of the three-dimensional information of the particles’ velocities and accelerations 

has allowed to employ first principles (e.g. conservation of mass and momentum) and tools from 

Computational Fluid Dynamics (CFD) to allow the dense reconstruction of the flow properties 

(e.g. velocity and static pressure) in the three-dimensional measurement domain. These 

approaches are often categorized as Data Assimilation (DA) because of the combination between 

experimental data and numerical models. They range from the representation of the flow field 

via cubic splines, evaluated by solving an optimization problem that accounts for physical 

constraints (FlowFit, Gesemann et al., 2016, and its evolution) to the use of vortex methods, 

where the vorticity transport equation is used to retrieve a vorticity field consistent with the 

measured particles’ velocities and accelerations (Schneiders et al., 2016, Jeon et al., 2018; Scarano 

et al., 2021; Jeon, 2021). A comparison of these approaches has been recently conducted by 

Sciacchitano et al. (2021b) considering the synthetic test case of the wall-bounded flow in the 

wake of a cylinder.  

LPT and DA approaches have been mainly developed for the study of aerodynamic problems, 

focusing on the kinematics and dynamics of fluid flows in measurement domains away from 

solid objects or at most containing a straight wall. However, many flows of interest interact with 

flexible structures, giving rise to steady or unsteady fluid-structure interaction problems 

governed by the equilibrium of Collar’s triangle of forces, namely aerodynamic, inertial and 

elastic forces. Only very recently, Cakir et al. (2021) explored the applicability of the VIC+ data 

assimilation approach in presence of generic solid boundaries via the use of the arbitrary 

Lagrangian-Eulerian method and of the immersed boundary treatment. Based on the above, the 
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purpose of the present work is to extend the assessments of LPT and DA algorithms, performed 

in the first Lagrangian Particle Tracking and Data Assimilation challenges (Sciacchitano et al. 

2021a, 2021b), to the case where the fluid flow interacts unsteadily with a flexible structure. 

 

2. Database description 

2.1 Physical problem 

A synthetic experiment is carried out which reproduces the air flow around a cylinder in ground 

effect, whereby the wall contains a flexible panel undergoing forced oscillations. The cylinder 

has a diameter D = 10 mm and is located 10 mm above the wall, at an upstream distance of 

15 mm from the upstream edge of the panel. The panel has dimensions of 100 mm × 100 mm and 

spans the entire width of the test section; it is actuated at its midpoint via a periodic sinusoidal 

excitation of amplitude A = 5 mm and frequency fpanel=100 Hz. Two materials are considered for 

the panel, namely metal (Young modulus E = 70 GPa, density metal = 2700 kg/m3) and rubber 

(hyper-elastic material with rubber = 950 kg/m3, C10 = 1.3333 MPa and D1 = 10-9 Pa-1), both of 

thickness t = 0.5 mm. The air flow has a free-stream velocity Vꝏ = 10 m/s, density of  = 1.22 

kg/m3 and kinematic viscosity of  = 1.503·10–5 m2/s. The boundary layer upstream of the 

cylinder is turbulent, with a momentum thickness Reynolds number of Re ≈ 4,150 measured 

10 mm upstream of the cylinder's center.   

 

2.2 Setup of the synthetic experiment and data acquisition modes 

The frame of reference and measurement volume are illustrated in Figure 1. The former is 

defined such that the X-axis is in the streamwise direction, the Z-axis is in the wall-normal 

direction (oriented towards the flow), and the Y-axis is in the spanwise direction following the 

right-hand rule. The origin of the frame of reference is at the wall when the panel is in the 

undeformed configuration, 70 mm downstream of the cylinder centre. The measurement volume 

has a size of 100 mm × 100 mm × 30 mm (X×Y×Z), with both X and Y between –50 mm and 50 

mm, and Z between 0 mm (undeformed wall location) and 30 mm. 

 
Figure 1. Illustration of the measurement domain and the system of axes. 
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The measurement domain is visualised with four or six synthetic cameras. Each camera has a 

sensor of 1920×1200 pixels, with a pixel pitch of 10 m. The four LPT cameras are located in the 

XZ plane at a height of about Z = 900 mm and with viewing angles of –30°, –10°, +10° and +30° 

with respect to the Z-axis. The remaining two cameras are used for the Digital Image Correlation 

(DIC) measurements and are located in the YZ plane at Z = 900 mm and with viewing angles 

of -10° and +10° with respect to the Z-axis. The simulations assumed that all cameras mounted 

lenses with focal lengths of f = 100 mm and no optical distortions, with an aperture setting such 

that the particle and marker images, modelled as a Gaussian, had a diameter of 2.4 𝑝𝑥̅̅ ̅ (𝜎 =

0.6 𝑝𝑥̅̅ ̅). Based on such optical setup, the size of the back-projected pixel in the object space is 

𝑝𝑥̅̅ ̅ = 86.7 𝜇𝑚. Two types of setup were considered. In the 1Lambda setup, only one light source 

illuminated the tracer particles and the markers on the panel, and only the four LPT cameras 

were employed. Instead, in the 2Lambda setup, two light sources with two different wavelengths 

and optical filters were simulated: one light source illuminated the tracer particles, which were 

recorded by the four LPT cameras, and the other one illuminated the panel markers, which were 

viewed by the two DIC cameras. The markers were randomly distributed on the panel’s surface 

at three different densities, namely low-density (LD) corresponding to a number of particles per 

pixels ppp ≈ 0.001, medium-density (MD) with ppp ≈ 0.01 and high-density with ppp ≈ 0.06. The 

flow was seeded with tracer particles at two seeding densities of ppp = 0.05 and ppp = 0.12; notice 

that these numbers indicate the number of flow tracer particles per pixel, without accounting for 

the number of panel markers. 

For the LPT part, three different image acquisition modes were considered, namely two-pulse 

(TP), four-pulse (FP) and time-resolved (TR). In the two-pulse acquisition, the participants were 

supplied with sets of single-exposure double-frame images with time separation t = 40 s, 

acquired at a frequency facq = 2 kHz. Because of the slow motion of the panel, the participants 

could use any image of the set to track the markers or perform DIC. The four-pulse acquisition 

consisted in double-frame double-exposure sets of images; the following temporal patterns were 

considered, expressed in units of t = 40 s: 212, 222 and 414. The convention is as follows, 

explained for the case 212: the first number (2) corresponds to the time separation between the 

two exposures of the first frame (2t = 80 s); the second number (1) is the inter-frame time 

separation (1t = 40 s); the third number (2) is time separation between the two exposures of the 

second frame (2t = 80 s). In the time-resolved acquisition, the datasets contained 501 images 

regularly spaced in time at a time separation of t = 40 s. The images were characterized by a 

high level of particle polydispersity and noise, with the aim of mimicking an experimental 

context with a medium to low signal-to-noise ratio. The histogram of the particles’ peak 

intensities has a peak at the grey level of 300 counts, with minimum and maximum particle 

intensities of 100 and 1000 counts, respectively. The distribution of the markers’ peak intensity in 

the images was chosen as uniform, between 800 and 1000 counts. Thermal noise was added in 

the images and modelled as a Gaussian distribution with 100 counts mean and 40 counts 

standard deviation. The above-mentioned settings thus led to having around 10% of the particles 

with an intensity maximum smaller than the maximum level of thermal noise (see Figure 2). 

Photon-shot noise was also added to the images. 
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For the DA part, the participants were supplied with the three-dimensional distributions of 

tracer particles and panel markers in the physical space, and were asked to reconstruct the 

velocity fields and pressure distributions. The datasets comprised two different panel markers 

densities, namely low-density (LD, ppp ≈ 0.001) and medium-density (MD, ppp ≈ 0.01), and, for 

each marker density, three different tracer particles densities: ppp = 0.02, 0.08 and 0.16. The 

datasets contained sequences of 501 evenly spaced time instants at constant time separation 

t = 40 s. Gaussian noise with standard deviation of 0.1 𝑝𝑥 = 8.67 µ𝑚 was added to both the 

particles’ and makers’ positions. 

 
Figure 2. Probability density functions of the particles’ intensities and of the thermal noise in the LPT images. 

 

The test cases contained in the database are summarised in Table 1. Table 2 reports the average 

number of particles, concentration and inter-particle distance at the three ppp values for the DA 

datasets. 

 

Table 1. List of cases present in the database.  indicates that the combination of setup, marker density and ppp is 

present,  indicates that the combination is not present. Each test case contains two data sets with the two panel 

materials, namely rubber and metal. The LPT and DIC sets contain data sets with three image acquisition modes, 

namely TP, FP and TR.   

Setup and marker 

density 

LPT and DIC DA 

0.05 ppp 0.12 ppp 0.02 ppp 0.08 ppp 0.16 ppp 

1Lambda-LD      

1Lambda-MD      

2Lambda-MD      

2Lambda-HD      

 
Table 2. Average number of particles, concentration and inter-particle distance at the three ppp values for the DA 

datasets. 

ppp Avg. number of particles Concentration [particles/mm3] Avg. inter-particle distance [mm] 

0.02 23,181 0.08 1.46 

0.08 92,261 0.31 0.92 

0.16 185,597 0.62 0.73 
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2.3 Data analysis 

The data analysis follows the same approach presented in the discussion of the main results of 

the Lagrangian Particle Tracking (Sciacchitano et al., 2021a) and Data Assimilation (Sciacchitano 

et al., 2021b) challenges. In particular, the LPT data were analysed based on the evaluation of the 

following parameters: 

- Percentage of correct particles, defined as particles within 86.7 µm (or 1 𝑝𝑥̅̅ ̅) from a true 

particle; 

- Percentage of false particles (or ghost), defined as particles whose distances from true 

particles exceed 86.7 µm (or 1 𝑝𝑥̅̅ ̅); 

- Percentage of false negatives (or missed particle), that are true particles not associated with 

any reconstructed particles within 86.7 µm, or 1 𝑝𝑥̅̅ ̅, from the former; 

- Errors of the following quantities (evaluated considering only the particles of the correct 

tracks): 

o Particles’ positions (for all cases); 

o Particles’ velocities (only for the FP and TR cases); 

o Particles’ accelerations (only for the FP and TR cases); 

o Panel markers’ positions, velocities and accelerations (for all cases).  

 

Instead, the DA data were analysed by evaluating the errors of the panel’s Z-position and 

surface static pressure, as well as the errors of the velocity components and static pressure in the 

flow field. 

 

2.4 Participants and approaches 

The data were shared within the participants of the HOMER consortium, which is composed of 

the German Aerospace Centre DLR, Delft University of Technology in the Netherlands, the 

French Aerospace Research Centre ONERA, the German University of Armed Forces in Munich 

UniBW, the University of Southampton in the UK, the French National Centre of Scientific 

Research CNRS, and the German instrumentation company LaVision GmbH.  

So far, the LPT data have been processed by the DLR and LaVision research groups, whereas the 

DA data have been analysed only by the LaVision group. Both the DLR and LaVision groups 

made use of the Shake-The-Box (STB, Schanz et al., 2016) Lagrangian Particle Tracking algorithm 

and of its advances for two-pulse and multi-pulse data processing (Novara et al., 2019). The 

differences between the DLR and the LaVision implementations were mainly in the number of 

iterations for the particles' triangulation and subsequent shaking and the algorithm used for 

fitting the particles' trajectories (TrackFit with Cubic B-spline for DLR, second order polynomial 



20th LISBON Laser Symposium 2022 

 

for LaVision). The LaVision DA results were obtained via the VIC#-FSI algorithm based on the 

Vortex-in-Cell framework (Jeon, 2021). 

 

3. Results 

3.1 Lagrangian Particle Tracking 

3.1.1. Time-Resolved acquisition 

The results for the metal plate, middle marker density and 2Lambda setup are presented here. 

Figure 3 illustrates the distribution of the ground-truth tracer particles in a 2 mm thick slab 

centred on the median plane Y = 0 mm. The particles are colour-coded by the streamwise 

velocity component. The flow field is clearly turbulent, with large velocity fluctuations ascribed 

both to the turbulent nature of the boundary layer and to the Kármán wake of the cylinder.  

 

Figure 3. Ground truth particles distribution in a slab –1 mm < Y < 1 mm, colour-coded by streamwise velocity; 

panel markers are illustrated in black. Metal plate, case MD, 2Lambda, ppp = 0.05.  

 

The visual inspection of the true and reconstructed particles (Figure 4) shows that the DLR 

algorithm is capable of reconstructing the great majority of the particles even at the largest ppp of 

0.12, with very few ghost particles. For the LaVision algorithm, instead, more missed particles 

are noticed already at the lowest ppp of 0.05. The above is confirmed by the quantitative results 

summarised in Table 3: for the DLR algorithm, more than 95% of the particles are correctly 

reconstructed at both ppp values, with a negligible percentage of ghost particles (below 1%). 

Conversely, for the LaVision algorithm, the percentages of correctly reconstructed particles are 

about 83% and 71% at ppp = 0.05 and 0.12, respectively. At both ppp values, the percentages of 

ghost particles remain between 1% and 2%. 
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The root-mean-square (RMS) errors on position, velocity and acceleration are also reported in 

Table 3. Let us first focus on the position error. From the analysis of the results, it is evident that 

the errors in the X and Y position are comparable, whereas those in the Z-position are two to 

three times larger. This result is attributed to the fact that the cameras are positioned on top of 

the measurement domain (towards positive Z values), hence the Z-direction is close to the 

viewing direction of the cameras. Also, it is noticed that the increase of the ppp value from 0.05 to 

0.12 causes only a moderate increase of the error level of about 10%. Finally, the errors obtained 

with the LaVision algorithm are twice as large as those of the DLR algorithm. When looking at 

the velocity errors, similar conclusions can be drawn: the errors of VX and VY are similar to each 

other and smaller than those on VZ; the LaVision algorithm yields larger error values. Overall, 

the velocity errors are between 0.5% and 2.5% of the free-stream velocity, values that are 

representative of a high-quality experiment, despite the important noise level and particle 

polydispersity. Instead, the acceleration errors range between 8% and 30% of the reference 

acceleration Vꝏ2/D, which indicates that the accurate evaluation of the Lagrangian acceleration is 

still an open challenge. As for the position and the velocity, also for the acceleration the errors 

are larger for the Z-component than for the X- and Y- components. 

  

  

Figure 4. Visualization of the true particles (red crosses) and reconstructed particles (black circles) in a sub-volume 

of the entire measurement domain. Left: DLR result; Right: LaVision result. Top row: ppp = 0.05; bottom row: ppp = 

0.12. Results for the metal plate, middle marker density, 2-Lambda setup, for the time-resolved (TR) image 

acquisition. 
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Table 3. Percentages of correctly reconstructed particles (true positives), false positives and false negatives, and 

position, velocity and acceleration RMS errors of the reconstructed particles. All results refer to the intermediate 

(fitted) time instant. Results for the metal plate, middle marker density, 2Lambda setup, for the time-resolved (TR) 

image acquisition. For the percentage values on velocity and acceleration errors, the reference velocity is Vꝏ = 10 

m/s, whereas the reference acceleration is Vꝏ2/D = 10,000 m/s2. 

 DLR LaVision 

 ppp = 0.05 ppp = 0.12 ppp = 0.05 ppp = 0.12 

True positives 97.8% 95.9% 83.3% 71.1% 

False positives (ghosts) 0.1% 0.9% 1.4% 1.7% 

False negatives (missed) 2.2% 4.1% 16.7% 28.9% 

RMS error on X m (𝑝𝑥̅̅ ̅) 4.1 (0.05) 4.6 (0.05) 9.6 (0.11) 10.4 (0.12) 

RMS error on Y m (𝑝𝑥̅̅ ̅) 3.8 (0.04) 4.2 (0.05) 9.7 (0.11) 10.4 (0.12) 

RMS error on Z m (𝑝𝑥̅̅ ̅) 9.5 (0.11) 10.6 (0.12) 16.1 (0.19) 18.0 (0.21) 

RMS error on VX m/s (%) 0.052 (0.5%) 0.059 (0.6%) 0.181 (1.8%) 0.179 (1.8%) 

RMS error on VY m/s (%) 0.051 (0.5%) 0.056 (0.6%) 0.186 (1.9%) 0.185 (1.8%) 

RMS error on VZ m/s (%) 0.095 (0.9%) 0.109 (1.1%) 0.213 (2.1%) 0.250 (2.5%) 

RMS error on AX m/s2 (%) 830 (8.3%) 921 (9.2%) 1376 (13.8%) 1748 (17.5%) 

RMS error on AY m/s2 (%) 775 (7.8%) 908 (9.1%) 1448 (14.5%) 1668 (16.7%) 

RMS error on AZ m/s2 (%) 1245 (12.5%) 1398 (14.0%) 2052 (20.5%) 3172 (31.7%) 

 

 

The probability distributions of the particles’ positional errors are shown in Figure 5, for the 

streamwise (X) and wall-normal (Z) components. The error distributions in the spanwise 

direction Y are similar to those in the streamwise direction X, and therefore are not reported. All 

error distributions are centred on zero, indicating that only random errors are present, whereas 

the systematic errors are negligible. As discussed before, the position errors in the streamwise 

(X) directions are 2 to 3 times lower than the corresponding errors in the wall-normal (Z) 

direction, resulting in narrower error distributions. Also, the differences in the results between 

the two ppp values (0.05 and 0.12, respectively) are small compared the differences between the 

algorithm. 

 

 

 

 



20th LISBON Laser Symposium 2022 

 

ppp = 0.05 ppp = 0.12 

  

Figure 5. Histograms of the errors of the particles’ positions, for ppp = 0.05 (left) and ppp = 0.12 (right). 

 

 

Figure 6 illustrates the comparison between the measured and the ground truth particles 

velocities and accelerations (only the Z-component is shown for sake of conciseness). For perfect 

particles reconstructions, the scatter plots in Figure 6 should align along straight lines having 

unitary slope and passing through the origin, because the measured velocity and accelerations 

should coincide with the true ones. For the DLR algorithm, both velocity and acceleration are 

reconstructed with high accuracy, and indeed the scatter plots align along a straight line with 

unitary slope, with very little spread especially for the velocity. Even large accelerations above 

20,000 m/s2 are captured mostly correctly. Instead, the LaVision distributions (right column) are 

broader, indicating larger measurement errors. In particular, the acceleration plot shows that 

large errors O(10,000 m/s2) are present even for particles featuring close-to-null accelerations. 
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DLR LaVision 

  

  

Figure 6. Measured particles velocities (top row) and accelerations (bottom row) as functions of the ground truth 

values. Only the Z-components are shown. Left column: DLR evaluation; right column: LaVision evaluation. Results 

for metal plate, case MD, 2Lambda, ppp = 0.05, TR acquisition. 

 

Figure 7 compares the panel’s Z-position (left), velocity (middle) and acceleration (right) 

between ground truth (top row) and those reconstructed by the DLR group (bottom row) for the 

metal plate, MD case, 2Lambda, ppp = 0.05. The panel is deflected downwards, with its centre 

located at Z = –5 mm with velocity VZ= –0.35 m/s and acceleration AZ = 1931 m/s2. The DLR 

algorithm correctly reconstructs the totality of the markers, with no ghosts. From visual 

inspection, the panel’s position, velocity and acceleration are reconstructed with very high 

accuracy, with no noticeable errors. This is confirmed by the quantitative results of Table 4, 

whereby the RMS errors on Z-position, velocity and acceleration are indeed a small fraction 

(below 1%) of the reference values. 
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Figure 7. Z-components of the panel’s position in mm (left), velocity in m/s (middle) and acceleration in m/s2 

(right). Comparison between ground truth (top row) and DLR evaluation for the metal plate, case MD, 2Lambda, ppp 

= 0.05, TR acquisition. 

 

Table 4. Root-mean-square errors on the fitted Z-position, VZ and AZ of the panel’s markers as evaluated by the 

DLR group for the metal plate, case MD, 2Lambda, ppp = 0.05 and 0.12, TR acquisition. Percentages are with respect 

to the maximum panel’s displacement (5 mm), velocity (3.14 m/s) and acceleration (1974 m/s2). 

 ppp = 0.05 ppp = 0.12 

RMS error on Z m (%) 2.6 (0.05%) 2.7 (0.05%) 

RMS error on VZ m/s (%) 0.006 (0.2%) 0.006 (0.2%) 

RMS error on AZ m/s2 (%) 18.8 (1%) 18.7 (1%) 

 

3.1.2. Two-Pulse acquisition 

In this section we present the results for the metal plate, middle marker density and 2Lambda 

setup for the two-pulse (TP) image acquisition. Figure 8 illustrates the spatial distributions of the 

true and reconstructed particles in a sub-volume of the entire measurement domains, for the 

DLR and LaVision algorithms for ppp = 0.05. As in the time-resolved case, the majority of the 

particles are correctly reconstructed, with smaller percentages of missed and ghost particles. As 

it can be seen in the results of Table 5, for both the DLR and LaVision algorithms, the 

percentages of correctly reconstructed particles decrease with increasing ppp, whereas the 

percentages of ghost particles increases. The latter remains below 1% with the DLR algorithm, 

whereas it exceeds 5% with the LaVision algorithm at the highest ppp. Overall, the DLR 
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algorithms yields the most accurate particle reconstruction, with over 80% of true positives at 

ppp = 0.12; conversely, the LaVision algorithms returns only 51% true positives at that seeding 

density. These values are significantly lower than those found in the time-resolved image 

acquisition (96% and 71%, respectively), clearly indicating that the presence of temporal 

information enhances the quality of the particles’ reconstructions.    

 

  

Figure 8. Visualization of the true particles (red crosses) and reconstructed particles (black circles) in a sub-volume 

of the entire measurement domain. Left: DLR result; Right: LaVision result. Results for the metal plate, middle 

marker density, 2Lambda setup, ppp = 0.05, for the two-pulse (TP) image acquisition. 

 

Table 5. Percentages of correctly reconstructed particles (true positives), false positives and false negatives, and 

positional RMS errors of the reconstructed particles. Results for the metal plate, middle marker density, 2Lambda 

setup, for the two-pulse (TP) image acquisition, considering both time instants. 

 DLR LaVision 

 ppp = 0.05 ppp = 0.12 ppp = 0.05 ppp = 0.12 

True positives 89.1% 82.2% 75.0% 51.1% 

False positives (ghosts) 0.3% 0.6% 1.2% 5.6% 

False negatives (missed) 10.9% 17.8% 25.0% 48.9% 

RMS error on X m (𝑝𝑥̅̅ ̅) 7.5 (0.09) 8.8 (0.10) 9.7 (0.11) 12.1 (0.14) 

RMS error on Y m (𝑝𝑥̅̅ ̅) 6.8 (0.08) 8.0 (0.09) 8.9 (0.10) 11.3 (0.13) 

RMS error on Z m (𝑝𝑥̅̅ ̅) 18.5 (0.21) 21.3 (0.23) 23.5 (0.27) 28.0 (0.32) 

 

Table 5 also reports the root-mean-square (RMS) errors of the reconstructed particles positions. 

The errors in the X- and Y-positions are comparable, and are typically below 10 m or 0.11 𝑝𝑥̅̅ ̅. 

Conversely, the errors on the Z-position, corresponding to the cameras viewing direction, are 

close to 20 m for the DLR algorithm, or even approaching 30 m for the LaVision algorithm. 
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Between ppp = 0.05 and ppp = 0.12, the positional error increases by about 10-20%. Comparing 

the two algorithms, the DLR one outperforms the LaVision analysis, yielding lower errors. 

The histograms of the positional errors in the streamwise (X) and wall-normal (Z) directions are 

shown in Figure 9. From the figure, it is clear that the error distributions are centred on zero, 

indicating that no systematic error is present. As in the TR case, the Z-error distribution is 

significantly broader than the X-error distribution, which is attributed to the viewing direction of 

the cameras. The histograms also confirm the slight error increase when increasing the seeding 

density from ppp = 0.05 to ppp = 0.12, thus resulting in broader error distributions.  

 

ppp = 0.05 ppp = 0.12 

  

Figure 9. Histogram of the positional error in the streamwise (X) and wall-normal (Z) directions for ppp = 0.05 (left) 

and ppp = 0.12 (right). Results for the metal plate, middle marker density, 2Lambda setup, for the two-pulse (TP) 

image acquisition, considering both time instants. 

 

3.1.3 Four-Pulse acquisition 

Also for the four-pulse acquisition, the results for the metal plate, middle marker density, 

2Lambda setup are discussed, considering the time sequence 212. The particles’ distribution of 

Figure 10 shows that, as for the TR and TP cases, the majority of the particles are correctly 

reconstructed, with a negligible amount of ghost particles. From the figure, the amount of 

missed particles seems larger for the LaVision algorithm (Figure 10-right). This result is 

confirmed by the results of the particles reconstruction analysis reported in Table 6, whereby the 

DLR algorithm returns 86% and 77% correctly reconstructed particles at the two ppp values, 

whereas for the LaVision algorithm the percentages of true positives are 66% and 54%, 

respectively. For the DLR algorithm, the amount of ghost particles is negligible (below 0.2% of 
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the total number of particles), which instead increases up to 2.4% with the LaVision 

implementation.  

 

  

Figure 10. Representation of the true particles (red crosses) and reconstructed particles (black circles) in a sub-

volume of the entire measurement domain. Left: DLR result; Right: LaVision result. Results for the metal plate, 

middle marker density, 2Lambda setup, ppp = 0.05, for the four-pulse (FP) image acquisition with time scheme 212. 

 

The positional RMS errors, also summarized in Table 5, exhibit values about 30-40% lower than 

those found in the TP case, namely between 5 m and 15 m for the DLR algorithm, and up to 20 

m for the LaVision algorithm. Also in this case, the errors in the Z-direction (i.e. the cameras 

viewing direction) are more than twice as large as the errors in the X- and Y-directions. Similarly, 

the velocity errors are smaller in the X- and Y-directions, typically between 0.6% and 1.1% of the 

free-stream velocity, and larger in the Z-direction, up to 1.9% of Vꝏ. The acceleration errors 

range between 15% and 54% of the reference acceleration Vꝏ2/D. The acceleration errors are two 

to three times larger than those obtained in the TR acquisition, which is ascribed both to the 

lower number of samples (only 4) along a track and the lower distance travelled by a particle 

along each track. As in the TR and TP cases, also in the FP case the DLR algorithm yields lower 

errors than the LaVision algorithm. 

The histograms of the position errors, illustrated in Figure 11, confirm what discussed above. 

The errors on the Z components are two to three times larger than those on the X and Y 

components (the latter are not shown for sake of clarity). The increase of seeding concentration 

from ppp = 0.05 to ppp = 0.12 yields a slight increase of the measurement errors. The particles 

position the errors are rather small (typically within 0.2 𝑝𝑥̅̅ ̅), centred at zero and rather 

symmetrical, indicating the absence of large systematic errors. 
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Table 6. Percentages of correctly reconstructed particles (true positives), false positives and false negatives, and 

position, velocity and acceleration RMS errors of the reconstructed particles at the intermediate time instant tM. 

Results for the metal plate, middle marker density, 2Lambda setup, for the two-pulse (FP) image acquisition with 

time scheme 212. For the percentage values on velocity and acceleration errors, the reference velocity is Vꝏ = 10 m/s, 

whereas the reference acceleration is Vꝏ2/D = 10,000 m/s2. 

 DLR LaVision 

 ppp = 0.05 ppp = 0.12 ppp = 0.05 ppp = 0.12 

True positives 86.0% 76.7% 65.6% 54.0% 

False positives (ghosts) 0.1% 0.2% 0.3% 2.4% 

False negatives (missed) 14.0% 23.3% 34.4% 46.0% 

RMS error on X m (𝑝𝑥̅̅ ̅) 5.4 (0.06) 6.3 (0.07) 6.7 (0.08) 8.2 (0.09) 

RMS error on Y m (𝑝𝑥̅̅ ̅) 4.9 (0.06) 5.8 (0.07) 6.5 (0.06) 7.8 (0.09) 

RMS error on Z m (𝑝𝑥̅̅ ̅) 13.3 (0.15) 15.4 (0.18) 16.5 (0.19) 19.8 (0.23) 

RMS error on VX m/s (%) 0.06 (0.6%) 0.07 (0.7%) 0.10 (1.0%) 0.11 (1.1%) 

RMS error on VY m/s (%) 0.06 (0.6%) 0.07 (0.7%) 0.09 (0.9%) 0.09 (0.9%) 

RMS error on VZ m/s (%) 0.13 (1.3%) 0.15 (1.5%) 0.16 (1.6%) 0.19 (1.9%) 

RMS error on AX m/s2 (%) 1510 (15.1%) 1741 (17.4%) 1857 (18.6%) 2259 (22.6%) 

RMS error on AY m/s2 (%) 1370 (13.7%) 1586 (15.9%) 1723 (17.2%) 2101 (21.0%) 

RMS error on AZ m/s2 (%) 3741 (37.4%) 4273 (42. 7%) 4508 (45.1%) 5405 (54.1%) 

 

 

ppp = 0.05                  ppp = 0.12 

  

Figure 11. Histograms of the position error for ppp = 0.05 (left column) and ppp = 0.12 (right 

column). Results for the metal plate, middle marker density, 2Lambda setup, for the four-pulse 

(FP) image acquisition with time scheme 212. 
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In Figure 12, the comparisons between ground truth and measured velocities and accelerations 

are illustrated for the case ppp = 0.05. As explained already for the discussion of the TR results, 

perfect particles reconstruction should return scatter plots aligned along a straight line with 

unitary slope, meaning that measured and ground truth values coincide. This is indeed what 

happens for the velocity, with a typical spread within 0.1 m/s or 1% of Vꝏ. Instead, the 

distributions are much wider for the acceleration plots, with errors O(10,000 m/s2) or 100% of 

the reference acceleration Vꝏ2/D even for relatively low true accelerations. 
 

DLR LaVision 

  

  

Figure 12. Measured particles velocities (top row) and accelerations (bottom row) as functions of the ground truth 

values. Only the Z-components are shown. Left column: DLR result; right column: LaVision evaluation. Results for 

metal plate, case MD, 2Lambda, ppp = 0.05, four-pulse (FP) image acquisition with time scheme 212. 
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3.2. Data Assimilation 

The data assimilation results of the case metal plate, LD case, are discussed here, for the three ppp 

values of 0.02, 0.08 and 0.16. In Figure 13, we illustrate the streamwise velocity component in the 

median plane (Y = 0 mm). The presence of a vertical (wall-normal) velocity gradient is evident, 

where the higher velocities above the free-stream value are found in the top of the measurement 

domain, whereas the velocity decreases to zero at the wall. The flow is clearly turbulent, with 

large fluctuations attributed not only to the turbulent boundary layer, but also to the Kármán 

vortex street in the wake of the cylinder. The LaVision 3D result at ppp = 0.02 (Figure 13-middle) 

reproduces the main flow features of the ground-truth velocity field (Figure 13-top), although 

with an evident spatial modulation. As expected, when the ppp is increased to 0.16 (Figure 13-

bottom), the turbulent flow structures are reproduced with higher accuracy.  

 

 

 

 

Figure 13. Comparison of contours of the streamwise velocity component in m/s at the median plane Y = 0 mm. 

Top: ground-truth flow field; middle: LaVision 3D result at ppp = 0.02; bottom: LaVision 3D result at ppp = 0.16.  
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When looking at the static pressure contour at the median plane (Figure 14), relatively high 

pressure is found at the location of the panel’s centre (X = 0), from which the pressure decreases 

radially. The LaVision3D algorithm correctly reproduces this trend both at the lowest (Figure 14-

middle) and highest (Figure 14-bottom) ppp values, with no significant bias error. However, 

some spatial modulation effects are noticed, as it can be seen by the low pressure structure 

at -0.04 m < X < -0.03 m, whose peak value is attenuated at both ppp's.  

 

 

 

Figure 14. Comparisons of contours of the static pressure in Pa at the median plane Y = 0 mm. Top: ground-truth 

flow field; middle: LaVision 3D result at ppp = 0.02; bottom: LaVision 3D result at ppp = 0.16. 

 

Figure 15 summarises the mean bias and random errors of the velocity magnitude (left) and 

static pressure (right) for the LaVision 3D and 4D algorithms at the three ppp values. As 

expected, the errors decrease with increasing ppp, which is ascribed to the ability to resolve 

smaller length scales in the flow when the seeding concentration is higher. Also, especially at the 

higher ppp, the use of the temporal information in the data assimilation algorithm (LaVision 4D) 

enhances the accuracy of the results, leading to smaller errors. For the velocity, the mean bias 
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errors are within 0.1 m/s or 1% of the free-stream velocity, whereas the random errors decrease 

from about 1 m/s (10% Vꝏ) at the lowest ppp to below 0.5 m/s (5% Vꝏ) at the highest ppp. For the 

static pressure, instead, the mean bias error component (4 to 8 Pa, 6.6% and 13% of qꝏ) is larger 

than the random error component, which decreases from 4 to 2 Pa with increasing ppp.  

 

  

Figure 15. Mean bias and random (std) error of the velocity magnitude (left) and of the static pressure (right) in the 

flow field, as a function of the ppp. The symbol keys apply to both plots. 

 

From the analysis of the power spectra of the wall-normal velocity component VZ, illustrated in 

Figure 16, the different accuracies of the velocity reconstructions at different ppp values emerge. 

As expected, the power spectra from the LaVision 3D and LaVision 4D algorithms agree with the 

ground truth spectrum at the lowest wave numbers (larger wave lengths ). Instead, at higher 

wave numbers, the reconstructed flow fields strongly modulate the velocity fluctuations, 

resulting in lower values of the power spectra. In particular, at the lowest ppp of 0.02, the 

measured spectra start departing from the ground truth one already before k ~ 200 m-1 ( ~ 5 

mm), independently of the algorithm used (LaVision 3D or LaVision 4D). Instead, at the higher 

ppp values, the measured spectra follow the ground truth one up to k ~ 300 m-1 ( ~ 3 mm) at 

ppp = 0.08 and k ~ 360 m-1 ( ~ 2.8 mm) at ppp = 0.16, hence enabling to resolve accurately flow 

length scales as small as 1/3 of the cylinder’s diameter or four times the inter-particle distance.   

Figure 17 shows the ground truth panel’s position and surface pressure (left column) in 

comparison with the reconstructed values from the LaVision 3D algorithm at ppp = 0.02 (right 

column). At the considered time instant, the panel is deflected downwards reaching Z = –4.75 

mm at its centre. The panel’s position is reconstructed with very high accuracy, with minor 

differences with respect to the true position, mainly at the panel’s edges. 
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Figure 16. Power spectra of the wall-normal velocity component VZ. Left: entire spectra; right: detail for wave 

numbers between 100 and 410 m-1. The symbol keys apply to both plots. 

 

  

  

Figure 17. Left column: ground truth panel’s Z-position (top) and surface pressure (bottom). Right column: panel’s 

Z-position (top) and surface pressure (bottom) reconstructed with the LaVision 3D algorithm at ppp = 0.02. 
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The surface pressure is the minimum towards the upstream edge the panel (X < –40 mm) and 

reaches its maximum value pmax = 23 Pa at the panel’s centre due to the flow deceleration caused 

by the panel’s deflection. The reconstructed surface pressure field (Figure 17 bottom-right) 

reproduces correctly the trend of the ground truth surface pressure; however, the magnitudes of 

both the minimum and the maximum pressure values are underestimated by over 10 Pa. 

A quantitative analysis of the mean bias and random errors of the panel’s position and surface 

pressure are reported in Figure 18, considering the LaVision 3D and LaVision 4D algorithms and 

the three ppp values. The position errors (Figure 18-left) are independent of the ppp and the data 

assimilation algorithm, and attain values of –5 m and 5 m for the mean bias and random 

components, respectively, which correspond to 0.1% of the panel’s maximum deflection. Such a 

behaviour is quite logical as the marker density is the same throughout, but also indicates that 

the accuracy of marker detection was not affected by the increase in particle density. Also for the 

surface pressure (Figure 18-right), the results obtained with the two algorithms are rather 

similar. The increase of ppp yields a decrease of the random errors from 8 Pa to 4 Pa, whereas the 

mean bias error slightly increases in magnitude, especially for the LaVision 4D algorithm, 

reaching –4 Pa at the highest ppp. 

 

  

Figure 18. Mean bias and random (std) error of the reconstructed Z-position of the panel (left) and of the surface 

static pressure on the panel (right), as a function of the ppp. The symbol keys apply to both plots. 

 

4. Conclusions 

A benchmark synthetic database is generated considering the unsteady interaction between a 

cylinder’s wall-bounded wake flow and a panel undergoing a forced motion. The database, used 

for the evaluation of Lagrangian Particle Tracking and Data Assimilation algorithms within the 

framework of the European project HOMER, considers two panel materials (metal and rubber), 

different densities of markers on the panel’s surface and of flow tracers, different experimental 
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setups (only LPT cameras or combinations of LPT and DIC cameras), and different acquisition 

modes (time-resolved, two-pulse and four-pulse image acquisitions). The analysis of the LPT 

results showed that the particles’ reconstructions along the cameras’ viewing direction 

(Z-direction) suffered from 2 to 3 times higher uncertainty than the reconstructions in the other 

directions (X and Y). As expected, higher accuracy was obtained with the time-resolved image 

acquisition, followed by the four-pulse image acquisition. The uncertainty of the particles’ 

reconstructions with the two-pulse strategy was twice as large as that of the time-resolved 

strategy. While the particles positions and velocities were reconstructed with high accuracy 

(uncertainties typically below 0.1 𝑝𝑥̅̅ ̅ and 1% of Vꝏ, respectively), larger errors were encountered 

for the particles’ accelerations, typically ranging between 10% and 30% of the reference 

acceleration Vꝏ2/D. Hence, it can be concluded that the accurate determination of the particles’ 

Lagrangian accelerations is still a challenge that requires further improvements in the LPT 

algorithms. Finally, differences in performances were noticed between the DLR and the LaVision 

LPT algorithms, with the former typically yielding higher percentages of reconstructed particles 

and lower reconstruction errors.  

From the analysis of the Data Assimilation results, it emerged that both the velocity and the 

pressure field suffered from errors of up to 10% of the reference values Vꝏ and qꝏ, respectively. 

These errors decrease to 5% for the velocity and 7% for the pressure when increasing the seeding 

concentration to the highest ppp of 0.16. Also, the use of the temporal information in the data 

assimilation algorithm yielded a slight increase in the measurement accuracy, especially for the 

velocity. When looking at the spatial power spectra of the velocity fluctuations, it was noticed 

that the higher ppp enabled to resolve accurately smaller turbulent structures in the flow. Flow 

scales of at least four times the inter-particle distance were correctly reconstructed with the DA 

algorithms. 

The panel’s position could be reconstructed within 5 m accuracy (0.1% of the peak 

displacement) with both algorithms at the three ppp values. The reconstructed surface pressure 

followed closely the trend of the ground truth value, but exhibited both bias and random errors 

of the order of 10% qꝏ. 
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