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ABSTRACT

A novel full meshless super-resolution method for image velocimetry is proposed. This method builds upon the com-

bination, presented in Tirelli et al. (2023a), of K-nearest neighbour Particle Tracking Velocimetry (Tirelli et al., 2023b,

KNN-PTV) and constrained Radial Basis Functions regression (Sperotto et al., 2022, c-RBFs). The main novelty is that

the algorithm is implemented here in a fully meshless version, i.e. it does not require the definition of a common

Eulerian grid at any step of the process. KNN-PTV enhances the spatial resolution of vector fields by exploiting data

coherence in space and time, even for non-time-resolved measurements. On the other hand, c-RBFs provide an analyt-

ical representation of the field from scattered data while allowing the introduction of physical constraints. In this new

version, the dictionary to blend data from different snapshots is computed with a meshless POD approach developed

by the authors and presented in another contribution to this conference. This approach removes the last constraint

of Eulerian grids and paves the way for a fully meshless algorithm. The algorithm is validated on a challenging 2D

synthetic case, such as turbulent channel flow, and an experimental case involving the separation bubble around the

frontal portion of a Ground Transportation System (GTS).

1. Introduction

Measuring turbulent flows poses challenges due to the vast range of spatial and temporal scales
involved, a range that expands with increasing Reynolds numbers. While Particle Image Velocime-
try (PIV) has become a robust tool for this purpose (Westerweel et al., 2013), its ability to resolve
turbulent scales is constrained by the sensor size and the interparticle spacing in images. De-
spite the potential to enhance spatial resolution through time resolution by exploiting consistency
over short sequences (Sciacchitano et al., 2012; Schneiders et al., 2014), it appears that two-frame
PIV has reached its physical limit in terms of dynamic spatial range. One way to overcome these
limitations is to recognize that each vector realization is a sample from an underlying statistical
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distribution. Individual vectors can be obtained with super-resolution Particle Tracking Velocime-
try (Keane et al., 1995, super-resolution PTV), and are the natural output of modern 3D tracking
methods (Wieneke, 2012; Schröder & Schanz, 2023). The main advantage of using individual vec-
tors with respect to cross-correlation approaches is the reduced systematic errors. Large amounts
of data from different snapshots can thus be used to improve spatial resolution and measurement
accuracy.

Recent advances in data-driven and machine-learning algorithms have led to resolution-enhance-
ment methods analyzing statistical distributions of available samples. Contributions following
this path include Data-Enhanced PTV (Cortina-Fernández et al., 2021, DEPTV), KNN-PTV (Tirelli
et al., 2023b), and randomly-seeded super-resolution generative adversarial networks (Güemes et
al., 2022, RaSeedGAN). KNN-PTV stands out for its simplicity of implementation and its capability
to deliver high-resolution vector fields and uncertainty and represents the starting point of the
methodology presented in this work.

In the recent work presented by Tirelli et al. (2023a), we demonstrated the capability of recovering
spatial resolution coupling KNN-PTV with the constrained regression via Radial Basis Functions
(c-RBFs) introduced by Sperotto et al. (2022). The underlying hypothesis is that the principle lever-
aged by KNN-PTV can be applied to artificially increase the particle density of individual snap-
shots, offering denser scattered distributions to c-RBFs and resulting in a physically constrained
super-resolution. The KNN-PTV explores an ensemble of statistically-independent snapshots to
identify local similarity in terms of flow structures at various time instants. Initially, the algorithm
divides the measurement domain into subdomains, aiming to ensure similarity on a local scale.
Subsequently, it employs an unsupervised KNN search within the space of significant flow fea-
tures, which are derived through Proper Orthogonal Decomposition (Lumley, 1967, POD) of train-
ing data obtained via cross-correlation-based methods or binning of PTV data. The method blends
local vectors from snapshots that are locally similar and artificially increases the particle density,
feeding the constrained regression with enriched particle fields. This allows placing smaller Gaus-
sian basis, well supported, that can easily model the smallest scales.

The enforcement of c-RBFs provides as natural output an analytical representation of the flow field
that does not depend on the mesh selection. The final limitation of this algorithm that constrained
it to a structured Eulerian grid stems from the need to employ POD. The conventional POD is
based on the decomposition of discrete data.

Recently, we introduced a new approach for extracting POD modes directly from particle dis-
tributions, referred to as meshless POD, that removes the need to pass through Eulerian grids.
The meshless modes obtained through this new method have demonstrated increased accuracy,
primarily by avoiding the modulation error associated with the interpolation process related to
second-order spatial derivatives (Scarano, 2003).

In the context of this work, the integration of this methodology in the algorithm introduces two
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advantages. Firstly, the features extracted are less biased by modulation errors, enabling more ac-
curate identification of neighbours. On the other hand, this opens up the possibility of developing
a fully meshless algorithm. The results can be interpolated onto the most suitable mesh, whether
it is coarser for a focus on larger scales or finer in cases where smaller scales or specific coordi-
nates (e.g., radial) are of interest. This flexibility in mesh selection enhances the adaptability of the
approach to different needs and purposes.

The methodology is described in Sec. 2, while preliminary results on a Direct Numerical Simula-
tion (DNS) of the turbulent channel flow are presented in Sec. 3.

2. Methodology

The workflow of this updated version builds upon the one described in Tirelli et al. (2023a). The
main idea is that we merge particles of different snapshots to increase the spatial resolution. The
merging is “activated” once local similarity is identified, i.e. the domain is divided into subre-
gions, and for each of them at each time instants we search for the most similar realizations within
the time ensemble. If the flow fields in a subdomain at different time instants are deemed to be
sufficiently similar, their particles are merged and a denser snapshot is created. Similarity is as-
sessed with a local POD. The data are then used to feed a constrained interpolator based on RBFs
to obtain an analytical description of the flow field.

The main advance we propose here is to remove to need of passing through an interpolation on an
Eulerian grid in any of the steps of the process. The algorithm can be summarised in 4 main steps:

1. Vector calculation via super-resolution PTV (Keane et al., 1995) or similar methods.

2. Local POD analysis to assess similarity: the domain is divided into subdomains where the
POD extracts the ith local space of features ΘLi

= ΨLi
ΣLi

. This process is hereby carried out
using a fully meshless POD formulation, summarized below. This will be the feature set that
drives the KNN search for neighbours.

3. Identification of the optimal number of neighbours as the value that explains the 90% of the
variance of the reduced temporal correlation matrix Kr.

4. Velocity field reconstruction using the c-RBFs as described in Sperotto et al. (2022) on the
enriched particle distribution obtained following the map of neighbours of the previous step.

The most notable innovation of this new version is the introduction of the recently proposed mesh-
less POD as a tool for feature extraction in step 2. This eliminates the need to build low-resolution
fields for training using binning, as in Tirelli et al. (2023b). The fields for local POD are replaced by
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approximations of analytical functions describing the velocity fields at specific time instants ob-
tained directly from the particle distributions. This approximation ũ(x, ti) is achieved employing
c-RBFs:

ũ(x, ti) =
Nb∑
q=1

wq(ti)γq(x), (1)

where Nb is the number of basis functions used in the approximation (in this case it coincides with
the number of particles Np), γq is the qth regression basis, and w are the corresponding weights. The
vector x contains the coordinates on which the data are evaluated at the ith time instant ti among
the total Nt time instances. With no loss of generality, the basis functions employed in this work
are thin-plate RBFs.

Furthermore, the POD is now carried out directly on the analytical representations of the fluctuat-
ing velocity fields, again avoiding the step of interpolating on an Eulerian grid and the associated
modulation error (Tirelli et al., 2023c). The inner product in the spatial domain among all the ve-
locity field approximations allows us to compute the temporal correlation matrix K through the
definition of the inner product in the continuous domain, whose generic element Kij is given by:

Kij =
1

∥ Ω ∥

∫
Ω

ũ(x, ti) ũ(x, tj) dΩ. (2)

with Ω is the spatial domain considered.

The temporal modes and eigenvalues needed to build the feature dataset ΘLi
are then obtained

by decomposing K via eigenvalue decomposition. This step is performed for each subdomain
considering only the particles that fall in the ith subdomain. This meshless approach results in a
more precise decomposition, leading to enhanced accuracy in feature extraction and, consequently,
improved identification of neighbours.

The third step is the evaluation of the optimal number of neighbours. It is extracted directly from
the temporal correlation matrix of the specific subdomain. First of all, the rank r is computed as:

r = argmin

(∑i
j=1 diff(σj)∑Nt

j=1 diff(σj)
> 0.9

)
. (3)

This approach allows us to determine the minimum number of modes that explain 90% of the vari-
ance, highlighting their significance. Utilizing this value, a reduced-order version of the correlation
matrix Kr is computed, incorporating only the first r modes.

It is essential to emphasize that this step exclusively yields the count of neighbours without spec-
ifying their positions. The positions are determined by the KNN leveraging the more refined fea-
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ture space. Enhanced precision is achieved by using the mesh-free modes. This process is applied
independently for each of the local subdomains in order to achieve a map of neighbours.

The high-resolution flow fields are achieved through c-RBFs regression as explained in Tirelli et
al. (2023a). Bearing in mind the definition of ũ in Eq. 1, for this specific case only Gaussian basis
has been employed, while in the previous version there was also a polynomial set. Despite the
well-known significant role that such a basis plays in terms of regularization of the regression and
approximation of global behaviour, it is also acknowledged that its effectiveness heavily relies on
the user’s expertise. This is crucial as the correct scaling of the domain is required to position
them optimally. Inspired by the concept of the first KNN-PTV, aiming for an end-to-end tool that
starts from raw images and yields output with minimal user intervention, the polynomial function
has been excluded. This decision, while sacrificing a degree of accuracy, reduces the number of
parameters to be selected. Future investigations will focus on identifying a set of bases that strikes
the best compromise between accuracy and simplicity.

3. Validation and preliminary results

3.1. Turbulent channel flow

The algorithm proposed was tested using synthetic PTV data derived from a direct numerical sim-
ulation (DNS) of a turbulent channel flow obtained from the Johns Hopkins Turbulence Database
(http://turbulence.pha.jhu.edu/). The dimensions of the channel consist of 2 half-channel-
heights h from wall to wall, 3πh in the span-wise direction and 8πh in the streamwise direction. For
all simulation settings, please refer to Li et al. (2008). In this simulated experiment, subdomains of
2h × h are extracted in the streamwise and wall-normal directions, respectively. The resolution is
set at 512 pixels/h and the particle image density is 0.01 particles per pixel. To reduce the correla-
tion between different samples, the snapshots are generated with a time separation of 1 convective
time. A large number of snapshots are extracted by exploiting flow homogeneity in the streamwise
and spanwise directions. The subdomains are separated by 2h in the streamwise and 0.25h in the
spanwise direction, resulting in a total of Nt = 11856 generated snapshots. The performance of the
algorithm was evaluated using the normalized root mean square error δRMS :

δRMS =

√
Nt∑
i=1

(Ui−UDNSi
)2+(Vi−VDNSi

)2

Nt

Ub

, (4)

with Ub as bulk velocity, equal to 7.5 pixels, and UDNS, VDNS indicate respectively the streamwise
and wall-normal velocity components of the reference velocity field.

A qualitative comparison among the methods on an instantaneous streamwise velocity field con-

http://turbulence.pha.jhu.edu/
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a) PIV b) KNN-PTV

c) KNN-PTV + RBF d) Full Meshless

e) DNS

Figure 1. Instantaneous streamwise velocity field contours estimated with: (a) standard PIV with interrogation
window of 32× 32 pixels, (b) KNN-PTV, (c) KNN-PTV + RBF. The reference field from the original DNS is included

for comparison (d) .

PIV IW = 32 KNN-PTV KNN-PTV + RBF Full meshless
0.0222 0.0196 0.0173 0.0170

Table 1. Spatial average of the root mean square error ⟨δRMS⟩ evaluated for PIV with interrogation window of 32
pixels, KNN-PTV, KNN-PTV with the help of RBF and the full meshless version of the algorithm

tours is proposed Fig.1. The reference is standard PIV with an interrogation window of 48 pixels,
simulated by filtering the data with a moving average and down-sampling the result. The bias
error on the mean flow has been corrected according to Tirelli et al. (2023c). This represented the
benchmark for the first version of KNN-PTV, which exploiting local similarity in the datasets was
able to recover spatial resolution, especially in the near-wall region, dominated by the smallest
scales filtered out by the moving average process of PIV. A significant improvement is evident
when comparing this contour with the version of the algorithm proposed by Tirelli et al. (2023a).
Here the weighted average system used for reconstructing the high-resolution field in the first
algorithm has been substituted with a more robust constrained regression based on radial basis
functions. The enhancement in spatial resolution is substantial. Additionally, a key innovation
introduced by this version is the analytical approximation of the flow field as output. On the other
hand, the full meshless version proposed here removes the last constraints imposed by Eulerian
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Figure 2. Picture of the experimental setup

grids. The spatially-averaged root mean square error ⟨δRMS⟩ is reported in Table 1.

For this specific application, the c-RBFs regression was constrained to have no-slip conditions at
the wall. Additionally, divergence-free condition has been applied only as a penalty to regular-
ize the regression. The domain contained about 2500 collocation points following the clustering
approach explained in Sperotto et al. (2022).

It is worth noting that while all the previous methodologies have likely already reached their
peak performance, the results of the full meshless algorithm are merely preliminary and have
not undergone any specific tuning. This is an encouraging outcome, suggesting the potential for
further investment in the development of this full meshless algorithm.

3.2. Separation bubble

The experimental test case involves the investigation of the separation bubble around the head of
a scale-model Ground Transportation System (GTS) without wheels (width D = 85 mm, height
h = 120 mm and length L = 650 mm). The truck naturally presents a separation bubble when
facing the flow. For this reason, the region of interest is restricted to the upstream region, spanning
a domain with height H = 38 mm and width W = 139 mm. The experiment was carried out in the
Göttingen-type wind tunnel of the Department of Aerospace Engineering at Universidad Carlos
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a) b = 48

b) b = 128

c) Full Meshless

Figure 3. Instantaneous streamwise velocity field contours estimated with: (a) moving average b = 48 pixels, (b)
moving average b = 128 pixels and (c) full meshless.

III de Madrid.

The experimental setup is reported in Fig 2. Illumination is provided by a cavity Ng:YAG Quantel
Evergreen laser. The flow is seeded with droplets of Di-Rthyl-Hexyl-Sebacate (DEHS) with 1 µm

diameter generated by a Laskin nozzle. The PIV images (2560× 700 pixels) were recorded with an
Andor Zyla sCMOS 5.5 MP, with a resolution of 18.4 pix/mm. A Quantum composer 9520 Series
Pulse Delay Generator has been employed to coordinate illumination and recording. Other details
about the experimental setup are reported in Tab 2.

Velocity vectors are obtained using a super-resolution Particle Tracking Velocimetry (PTV) method
(Keane et al., 1995). A multi-step image deformation algorithm (Scarano, 2001), utilizing high-
accuracy interpolation schemes (Astarita & Cardone, 2005; Astarita, 2007), is employed to deter-
mine the predictor for the biased search. Others details about the post processing are summarised
in the last row of Tab. 2.

The PTV analysis yields an average of 15000 vectors per snapshot, which corresponds to 0.008

vectors per pixel. For this experimental test case the main difficulties are related to the lack of
an appropriate ground truth to be used as a reference. To overcome this problem, we derive the
ground truth from a moving average with a bin size b = 48 pixels on this vector distribution.
Vectors are then randomly eliminated from the dataset, reducing their number to 1500 and thereby
decreasing the density by a factor of 10. This results in an average of 10 particles per 128 × 128
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Table 2. Experimental setup details.

Flow facility Göttingen-type wind tunnel. Test section: 0.4 m × 0.4 m ×1.5 m. Ve-
locity range: 4 m/s to 20 m/s. Turbulence intensity below 1%.

Seeding Laskin nozzle. Droplets of Di-Ethyl-Hexyl-Sebacate (DEHS) with d =

1µm.
Illumination Dual cavity Ng:YAG Quantel Evergreen laser 200 mJ/pulse at 10 Hz.

Imaging Andor Zyla sCMOS 5.5 MP (2560× 2160) pixel array, 6.5× 6.5 µm pixel
size, resolution 18.4 pix/m. Objective Tokina 100 mm lens. f/# = 16.

Post-processing POD background removal (Mendez et al., 2017), iterative multi-
grid/multi-pass algorithms (Willert & Gharib, 1991; Soria, 1996), image
deformation (Scarano, 2001), B-spline interpolation (Astarita & Car-
done, 2005; Astarita, 2007).

pixel bin. This downsampled vector distribution is employed to perform the proposed algorithm
and a moving average with b = 128 pixel, used for comparison. A total of 4000 snapshots are used
for this analysis.

The preliminary results are compared in Fig. 3. The spatial coordinates are normalized using the
height of the truck D, while the velocities are normalized using the freestream velocity U∞ = 10

m/s. For the full meshless KNN-PTV approach, a total of 4251 collocation points are placed in
the domain, with the no-slip condition enforced as constraints near the sides of the truck. From
a qualitative comparison, the reconstruction produced by the proposed algorithm appears to be
smoother if compared to the case with b = 128 pixels. This effect is likely due to the Gaussian
basis, which tends to regularize the data. Overall, the method demonstrates good accuracy in cap-
turing the velocity peaks that are filtered out by the moving average process, especially around
the head of the bubble. The same metric reported in Eq. 4 is used to assess the accuracy of the
methodologies. The values of δRMS are very close: 0.097 for the full meshless algorithm versus
0.106 for the binned one. The algorithm thus shows significant potential for improvement, espe-
cially considering that these preliminary results were obtained without any tuning. Additionally,
other combinations of basis functions and strategies for evaluating similarity could be explored in
future work.

4. Conclusions

A novel meshless super-resolution technique has been proposed for image velocimetry, leveraging
the combined strengths of KNN-PTV and c-RBFs. This method enhances particle density by “bor-
rowing” particles from analogous snapshots, even in the absence of time resolution, and strength-
ens regression robustness through the integration of physical constraints, all in a fully meshless
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manner. Preliminary results demonstrate promising outcomes in terms of reconstruction accu-
racy and spatial resolution, validated through benchmark analyses on a synthetic fully-turbulent
flow test case and the experimental case of a separation bubble. Moreover, this approach is mesh-
independent and provides analytical representations of flow fields that are easy to interpolate and
differentiate on any grid, paving the way for the extraction of high-resolution turbulent statistics.
This adaptability to the specific needs and purposes of the investigation represents an important
novelty. The methodology is anticipated to be particularly advantageous for 3D flow analysis,
where the need for spatial resolution is more urgent than planar application. Furthermore, the use
of constrained regression can compensate for the larger interparticle spacing of these cases enforc-
ing constraints that include the physics behaviour of the flow. The authors are currently extending
this methodology to 3D measurements.
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