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Experimental analysis of flow birefringence in Jeffery-Hamel flow
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ABSTRACT

Cardiovascular diseases are the leading cause of death globally, taking an estimated 20.5 million lives each year (Lind-

strom et al., 2022). The onset and progression of these diseases are closely related to the stress distribution caused by

blood flow within the vascular system. The mechanisms involved are still not fully understood, and non-invasive mea-

surements of unsteady stress fields are required to gain a better understanding. Although stress estimation through

simulations has been attempted, experimental validation to assess mathematical validity has not been conducted. The

photoelastic method developed in solid mechanics is a non-contact, non-stationary stress field measurement method.

The photoelastic method is being considered for application to fluids. In previous studies, simple shear flow and

uniaxial extensional flow experiments have shown a relationship between the measured phase retardation and the

velocity field. However, no clear relationship exists for extensional and shear combined flow fields. The objective of

the present study is to clarify the relationship between the velocity field and the measured phase retardation in an

extensional-shear combined flow. For this objective, photoelastic measurements were conducted in a steady flow field

using the Jeffery-Hamel flow, which is an extensional-shear combined flow with an analytical solution for the velocity

field. Comparison with the analytical velocity field showed that birefringence was proportional to the 0.88 and 0.92

power of the deformation in the shear or extensional-dominated region, respectively. The results show that the bire-

fringence followed the power law of extensional rate ε̇ (∆n ∝ ε̇0.95) where ε̇ is dominant. Whereas shear is dominant,

∆n ∝ γ̇0.88 holds. These results are consistent with previous studies using shear flow and uniaxial extensional flow.

Furthermore, it is shown that in the extensional-shear combined flow, the sum-of-squares root of two equations, one

of which is ∆n = γ̇0.88 · 9.0 × 10−8 where the shear rate dominates and the other of which is ∆n = ε̇0.95 · 9.2 × 10−8

in the region where the extensional rate dominates, holds. This suggests that the theory developed mainly for solids

could also be applied to fluids.

1. Introduction

Since the wall stress distribution in blood vessels due to blood flow is closely related to the onset
and progression of cardiovascular diseases, it is necessary to know the stress field. An example
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of a disease is the rupture of a cerebral aneurysm. It has been reported that the rupture of cere-
bral aneurysms is caused in part by strong shear stress applied to the vessel wall (Shojima et al.,
2004). The principle of cerebral aneurysm expansion, the rupture mechanism, and the progression
mechanism of arteriosclerosis are not yet clear, and it is necessary to obtain stress distributions to
elucidate them. Stress estimation by simulation has been carried out, however experimental val-
idation to assess the validity of the mathematical models used is insufficient (Jansen et al., 2014).
However, these methods are difficult to measure precisely in the near vicinity of the vessel wall
and have limited spatio-temporal resolution. If a stress field measurement method can be de-
veloped to solve these problems, enabling quantitative stress measurement and identification of
stress concentration points, it will lead to an elucidation of the mechanism. It is also expected
that a treatment method and an imaging diagnosis method will be established that enables early
detection. The development of a non-invasive stress field measurement method for unsteady and
complex flow fields is therefore required. Hence, we have focused our attention on photoelastic
measurements (Yokoyama et al., 2023; Worby et al., 2024; Nakamine et al., 2024). Photoelastic mea-
surement has been developed in solid mechanics and is a method for non-invasively measuring
unsteady stress fields. Adapting this method to fluids has the potential to be a better measurement
technique than the methods described above.

The photoelastic method is a technique for measuring the stresses applied to an object by mea-
suring the polarization state of transmitted light. The phase retardation and azimuth of the ob-
served light correspond to the principal stress difference and the direction of the principal stress,
respectively. To apply this method to fluid stress measurement, optically anisotropic particles are
dispersed in the fluid. To establish photoelastic methods in fluids, studies have been carried out
using different particles and measuring channels (Sato, 2022). Various flow channels have been
studied, with measurements in shear flow fields using rectangular tubes and rheometers, and in
extensional flow fields using Capillary Breakup Extensional Rheometry Dripping-onto-Substrate
and Optimized Shape Cross-Slot Extensional Rheometer flow channels (Sharma et al., 2015; Muto
& Tagawa, 2022).

In recent years, the photoelastic method was applied to the flow field by dispersing non-spherical
particles in a solution (Schmidt et al., 2002). The flow aligns the particles, which leads to optical
anisotropy in the fluid. Calabrese et al. (2021) conducted experiments in both extensional and
shear flow, confirming that the retardation is expressed as a power of shear rate γ̇ in shear flow
and the extensional rate ε̇ in uniaxial extensional flow. They provided the relationship ∆n ∝
|γ̇|0.9 ∝ |4ε̇|0.9. Lane et al. (2022) using a Taylor-Couette flow, showed the relationship between
shear rate and birefringence as ∆n ∝ |γ̇|0.537. The different power exponents are believed to result
from variations in particle interactions due to differences in the concentration of the photoelastic
material, Cellulose nanocrystal (CNC) suspension, and differences in the length of CNC, lead to
different rotational diffusion coefficients (Maguire et al., 1980). From both sets of results, it is
evident that there is a power-law relationship between birefringence ∆n and γ̇, ε̇. Previous studies
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revealed the relationship between γ̇ or ε̇ and ∆n in uniaxial extensional and shear flows. However,
it has not been confirmed whether these relationships hold in the extensional-shear combined
flows. Therefore, this study aims to use two-dimensional extensional-shear combined flow, Jeffery-
Hamel flow, to elucidate the relationship between strain rate and ∆n. This paper presents the
results comparing them with the theoretical velocity field.

2. Jeffery-Hamel flow

The Jeffery-Hamel flow is illustrated in Fig. 1. The flow is a two-dimensional radial flow with a
constant angle of the wall surface and the origin O serving as the source or sink. Considering polar
coordinates as shown in Fig. 1, α [rad] is the angle of the flow channel wall surface with respect
to the central axis. The distance (radius) from the origin O is denoted as r [m], and the velocity
at an angle θ [rad] from the central axis is denoted as ur [m/s]. The flow is perfectly radial, and
the velocity component uθ in the θ direction is 0, in the polar coordinate system, the continuity
equation is expressed by

1
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Assume that the flow velocity at θ = 0 is umax. Here, defining η =
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the following third-order nonlinear equation is derived (White, 2006)
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The wall surface is in no-slip condition. Also, since the flow is umax at θ = 0 and is symmetric, the
boundary conditions are determined as follows:

f(+1) = f(−1) = 0, f(0) = 1, f ′(0) = 0. (5)

Consider the cylindrical coordinate system (r, θ, z). The velocity gradient tensor ∇uij is shown in
the following equation:
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The deformation rate tensor Sij is therefore

Sij =
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If the pressure is p and the viscosity is µ, the stress tensor σij is given by
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The velocity gradient tensor ∇uij , the deformation velocity tensor Sij and the stress tensor σij

considering uθ = 0, uz = 0,
∂

∂z
= 0 in a Jeffery-Hamel flow is shown in the following equations:
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The principal strain rate Γ̇ (derived from the second invariant ΠS), shear rate γ̇, and extensional
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rate ε̇ of the Jeffery-Hamel Flow are expressed as
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The principal stress difference in the Jeffery-Hamel flow is shown in the following equation.
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Transforming Eq. (15) using Eq. (13) and Eq. (14) leads as follows.

σsec = 2µ
√

ε̇2 + γ̇2. (16)

While extensional flow is dominant (γ̇ ≪ ε̇) near the channel center, shear flow is dominant near
the channel wall (γ̇ ≫ ε̇).

Figure 1. Jeffery-Hamel flow.
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3. Photoelastic measurement

The photoelastic method (Aben et al., 2000) has developed as a technique for measuring stress
fields in solids. When stress is applied to a photoelastic material, it exhibits the property of causing
different refractive indices depending on the vibration direction of light, a phenomenon known as
birefringence. The photoelastic method utilizes the phenomenon of birefringence, enabling non-
contact stress field measurements. When circularly polarized light is incident to a stress-loaded
photoelastic material, birefringence cause different phase retardation depending on the vibration
direction of light, resulting in elliptically polarized light. Elliptically polarized light is character-
ized by two optical parameters, retardation ∆ and orientation ϕ. The retardation ∆ is associated
with the secondary principal stress, while orientation ϕ is related to the direction of the principal
stress. The relationship between the retardation ∆ and the principal stress is expressed by the
stress-optic law (Photoelasticity of Glass, 2012):

∆ = Cdσsec, (17)

where C [1/Pa] is the photoelastic modulus, d [m] is the thickness of the measured object in the
optical axis direction, and σsec [Pa] is mutually orthogonal principal stress differences. Note that
Eq.(17) is valid only when the principal stress and the camera’s optical axis direction are perpen-
dicular, and the distribution of principal stress along the optical axis direction is constant. Here,
birefringence ∆n is defined as follows:

∆n = ∆/d. (18)

The measurement principle of the photoelastic method is shown in Fig. 2. Circularly polarized
light transforms into elliptically polarized light when transmitted to a fluid experiencing birefrin-
gence. The measurement principle of the polarized camera is depicted in Fig. 3. The high-speed
polarization camera incorporates four polarizers in different directions (0◦, 45◦, 90◦ and 135◦). The
retardation of the incident light is calculated based on the light intensities of each polarizer (I0, I45,
I90 and I135) (Onuma & Otani, 2014) as follows:

∆ =
λ

2π
sin−1

√
(I90 − I0)2 + (I45 − I135)2

(I0 + I45 + I90 + I135)/2
. (19)

where λ is the wavelength of the light source.

4. Experimental method

Figure 4 shows the schematic of the experimental setup. The channel is positioned between the
light source and the high-speed polarization camera (CRYSTA PI-5WP, Photoron Co., Ltd, flame



21st LISBON Laser Symposium 2024

Figure 2. Illustration of a photoelastic method.

Figure 3. Schematic diagram of the measurement principle and image sensors of a high-speed polarization camera.
The four polarization sensors acquire the polarization intensity and calculate the retardation ∆ and the orientation

angle ϕ. The direction of the polarizers shown in the diagram indicates the direction of oscillation of the light
transitting.

rate: 250 f.p.s.). The channel was fabricated using a 3D printer. The channel has a shape that
includes an entrance region before and after the Jeffery-Hamel flow section. It features a wall
angle of α = 15◦, a narrow part of 1 mm, and a depth of d = 25 mm.

The working fluid was CNC (CNC-HS-FD, Cellulose Lab Co. Ltd.) mixed suspension. CNCs are
rod-like nanoparticles, which exhibit birefringence by orienting in the corresponding direction to
stress. CNC was dispersed in ultra-pure water and stirred for more than two hours at 25◦C using a
stirrer (CHPS-170DF, ASONE Co., Ltd.) rotating at 600 rpm. The concentration of CNC suspension
was set to 1.0 wt %. The CNC suspension is then sonicated using a homogenizer (UX-300, Mitsui
Electric Co. Ltd.) for 200 seconds (total working time:10 min (OFF time: 20 s, ON time: 10 s)) to
disperse the individual CNC nanorods.

Figure 5 shows the shear viscosity of CNC suspension measured by a cone-plate type rheometer
(MCR302, Anton Paar) at 22◦C. The data represent the averaged values obtained from four indi-
vidual measurements. In this paper, we approximated CNC suspension as a Newtonian fluid. The
flow rate was controlled by a syringe pump (PUMP 11 ELITE, Harvard Apparatus) in the range
of 10 – 50 ml/min at intervals of 10 ml/min. The flow direction was in the narrowing direction
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(opposite to gravity). After a steady state was reached, the flow field was recorded for two seconds
using a high-speed polarization camera (250 fps, 500 frames).

The obtained light intensity values were binarized to detect the channel walls. Then, we deter-
mined the coordinates of the hypothetical sink’s origin in the Jeffery-Hamel flow.

As the measurements were conducted in a steady state, we used time-averaged ∆n measurements
for analysis. Both analytical and experimental results were compared using polar coordinates, as
shown in Fig. 1. In addition, to mitigate the left-right asymmetry in the retardation distribution
caused by a slight elliptical polarization of the light source, we used the averaged values at points
where |θ| is the same.

Figure 4. A schematic of the experimental setup.

10-1 100 101 102 103 104

100

101

102

CNC 1.0wt%
Water

Figure 5. Shear viscosity µ versus shear rate γ̇.
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5. Results and discussion

Figure 6 shows the visualized image of the birefringence field with a scale of 29 pixels/mm. The
values on the channel walls have been replaced with zeros. In Fig. 6, focusing on the θ direction,
the birefringence value increases from θ = 0 (center of the channel) to θ = α (channel wall). In
addition, focusing on the r direction, the birefringence value increases as r decreases. It indicates
that birefringence increases at higher shear rates. In previous studies, it has been shown that the
birefringence increases as the shear rate or extensional rate increases (Calabrese et al., 2021; Lane
et al., 2022; Worby et al., 2024). Qualitative considerations show that the results of this experiment
follow the same trend as in previous studies.

To compare with previous studies that utilize a different coordinate system, we introduced invari-
ants. First, we compare measured birefringence ∆n with the invariant derived from the analytical
solution of the velocity field, the principal strain rate Γ̇. We extracted results from the circular
arc at r = 3.0 mm. Figure 7 shows the birefringence versus principal strain rate results. The color
represents the difference in flow rate during the experiment. For each flow rate condition, the prin-
cipal strain rate becomes larger along the arc and it reaches the maximum value at the wall. The
results shown in Fig. 7 indicate that ∆n is proportional to the 0.88 power of the principal strain rate
(∆n ∝ Γ̇0.88). This result agrees with previous studies regarding a power-law dependence on the
velocity gradient. The power exponent derived in the present study was 0.88, which lies between
exponents of 0.537 (Lane et al., 2022) and that of 0.9 (Calabrese et al., 2021). This could be due to
differences in the concentration of the suspension and the length of the CNC. The concentration of
the CNC suspension in this experiment was 1.0 wt%. The length of the CNC used is 250 nm. In
addition, since Jeffery-Hamel flow represents a flow field with only radial velocities, further inves-
tigation is needed to confirm whether the proportional relationship with the power of the principal
strain rate holds in the extensional-shear combined flows with different flow channel geometries.

Figure 8 shows the relationship between birefringence ∆n and the ratio of extensional rate to shear
rate γ̇/ε̇, where results on the arc with r = 3.0 mm. ∆n was obtained from polarization measure-
ments and γ̇/ε̇ was calculated from the analytical solution of the velocity field. Smaller values of
γ̇/ε̇ indicate that the extensional rate is dominant, while larger values of γ̇/ε̇ indicate that the shear
rate is dominant. At its lowest and highest points, the value was approximated as being only the
extensional rate or the shear rate and fitted with a power of ε̇ or γ̇. As a result, a relationship of
∆n = ε̇0.95 · 9.2 × 10−8 was obtained in the region where the extensional rate is dominant. On the
other hand, the relationship ∆n = γ̇0.88 · 9.0× 10−8 was obtained in the region where the shear rate
is dominant. From Fig. 8, in the region where γ̇/ε̇ < 10−1, the measurement results align well with
∆n ∝ ε̇0.95, and in the region where γ̇/ε̇ > 101, the measurement results align well with ∆n ∝ γ̇0.88.

Next, we focused on the relationship between ∆n, ε̇ and γ̇ in the extensional-shear combined region
of 10−1 < γ̇/ε̇ < 101. This area has not been experimentally investigated. So far thus, as shown in
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Eq. (17), the stress-optic law ∆n = Cσsec, used in solid mechanics, was introduced. The principal
stress difference σsec can be expressed as σsec = 2µ

√
ε̇2 + γ̇2 in the Jeffery-Hamel flow, as shown

in Eqs. (15) and (16). By replacing ε̇ and γ̇ in the equation for σsec = 2µ
√
ε̇2 + γ̇2 (Eq. (16)) by

ε̇0.95 · 9.2 × 10−8 and γ̇0.88 · 9.0 × 10−8 obtained by fitting the experimental values, we obtained√
(ε̇0.95 · 9.2× 10−8)2 + (γ̇0.88 · 9.0× 10−8)2. This equation is shown by the solid line in Fig. 8. The

results shown in Fig. 8 indicate that the experimental results showed good agreement with the
practice using the concept of principal stress difference. For shear and extensional flows, the only
comparison with the theory presented in Fig. 8 was the measurement results at r = 3.0 mm, but if
it can be confirmed that this relationship holds for other conditions, it may be possible to identify
a universal relationship that holds for the extensional-shear combined flows.

Figure 6. Birefringence measurement value of CNC suspension at the flow rate of 30 ml/min, showing time-averaged
values taken at 250 fps for 2 s. The contour plot displays the birefringence ∆n. The white dashed lines indicate the

channel walls.
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Figure 7. Birefringence ∆n versus the principal strain rate Γ̇ derived from the velocity field of the analytical solution.
The plots are experimental results and their colors correspond to flow rates.

Figure 8. Relationship between measured birefringence ∆n and the ratio of shear and extensional rate γ̇/ε̇ obtained
from analytical solution. The plots are experimental results and the colors correspond to flow rates. The dashed line

is power law trends as ∆n ∝ ε̇0.95, and the dotted line is power law trends as ∆n ∝ γ̇0.88. The solid line is the
sum-of-squares root of the two equations.
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6. Conclusion

This study aimed to clarify the relationship between photoelastic measurements and velocity fields
in extensional-shear combined flows. For this purpose, steady flow field polarization measure-
ments were conducted using the Jeffery-Hamel flow, which is the extensional-shear combined flow
and a flow field where an analytical solution for the velocity field exists. The polarisation parame-
ter ∆ was measured with a high-speed polarisation camera and converted to ∆n. The velocity field
was calculated numerically. The relationship between the time-averaged ∆n and the extensional,
shear, and strain rates calculated from the velocity field was investigated. The results showed that
∆n ∝ ε̇0.95 was established in the region where the extensional rate was dominant, while ∆n ∝ γ̇0.88

was established in the region where the shear rate was dominant. The results are in agreement
with previous studies using shear-only and uniaxial extensional-only flow channels. A power-law
relationship between phase retardation and shear rate and between phase retardation and exten-
sional rate is shown. In addition, in the region where there are both shear and extensional flow,
the sum-of-squares root of the two equations,

√
(ε̇0.95 · 9.2× 10−8)2 + (γ̇0.88 · 9.0× 10−8)2, showed

good agreement with ∆n. This can be explained by the stress optic law in solids. Future discussions
will also involve considerations of orientation, exploring how particle alignment corresponds to
velocity distributions.
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