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ABSTRACT

The present work investigates the performance of an advection-based flow reconstruction model to increase the tem-

poral resolution of PIV measurements recorded in a turbulent, planar jet. Using a semi-Lagrangian technique in

combination with Rapid Distortion Theory, a modified trajectory tracking procedure is implemented. The method

introduces a specification for a two-dimensional convective velocity Uc based on the least squares minimization of

the linearized advection equation, in contrast to the previously introduced one-dimensional mean velocity profile Um

outlined in Vocke et al. (2023). The new implementation is based on local flow measurements, making it well-suited

towards streamwise heterogeneity and spatially developing flows. With this, the flow at some unknown time tn can

be estimated from the know flow measurements at the forward tf and backward tb time. Spectral analysis illustrates

the model’s proficiency in recovering spatiotemporal information far exceeding the Nyquist frequency, with spectral

reconstruction errors of less than 5% for the most extreme case. It is demonstrated that the spectral content can be

estimated at least two orders of magnitude beyond the sampling frequency of the original recording. Improved per-

formance compared to alternative methods is demonstrated with only minor impact on computational time. This

indicates the approach may be used as a tool for experimental researchers a) having no access to a high-speed PIV or

b) with high-speed PIV to increase the spectral resolution even further.

1. Introduction

Particle image velocimetry (PIV) is a widespread experimental technique that provides instanta-
neous velocity field measurements. Despite PIV existing as the preferred measurement technique
(Westerweel et al., 2013), the majority of PIV systems are limited in their ability to resolve the
widespread temporal scales of most turbulent flows – particularly for challenging high Reynolds
number flows. Accordingly, reconstruction of under-resolved spectral content remains an ongoing
effort. We have previously addressed this problem through the development of an advection-
based flow reconstruction technique using a semi-Lagrangian numerical scheme to increase the
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temporal resolution of turbulent flow data (Vocke et al., 2023). The concepts outlined in Vocke
et al. (2023) are extended in the present work to determine the amount, as well as the quality of
spatiotemporal information that can be recovered beyond the Nyquist frequency through speci-
fication of a flow-dependent convective velocity. The performance of the temporal up-sampling
method is verified using both numerical (DNS) and experimental (PIV) flow datasets recorded for
a turbulent planar jet with sampling frequency fs. We demonstrate that the spectral information
of a PIV recording can be extended up to 100 times the Nyquist frequency.

The present investigation challenges the assumption that the spatiotemporal scales can be ade-
quately modeled with a convective velocity equal to the local mean flow, as used in Taylor’s hy-
pothesis (Taylor, 1938). Assuming the turbulent structures maintain a frozen pattern as they are
transported up to a certain distance downstream, the velocity fluctuations are generally described
with u′(x+∆x, t+∆t) = u′(x+∆x−Um∆t, t). The linear transformation using the mean velocity
vector Um violates the physical nature of the velocity fluctuations, as the space-time correlations
along the characteristic lines x−Umt = const. will not decay with increasing ∆t or ∆x. While such
approximation is appropriate for homogeneous flows, it becomes difficult to extend towards non-
equilibruim type flows where the effects of mean shear, turbulence intensity, and viscous forces
can be significant (Lin, 1953; Moin, 2009; Cheng et al., 2017; Mehrez et al., 2023; Jacobitz & Schnei-
der, 2024). The question then arises, what defines an optimal convective velocity and when is it
appropriate to assume that turbulent structures evolve according to the mean flow? Despite the
relevance, there seems to be a lack of work regarding the characterization of convective velocities
for different flow configurations (Álamo & Jiménez, 2009). Classically, this subject has been ex-
plored by authors such as Goldschmidt et al. (1981) and Wills (1964), who use correlation-based
approaches to define both broadband and scale-dependent convective velocities. More recently,
Álamo & Jiménez (2009) introduced a method based on a least-square minimization (LSM) of the
linear advection equation to define the convective velocity of individual Fourier modes. This work
was extended by Renard & Deck (2015) for application towards spatially developing flows. Uti-
lizing the methods described by Álamo & Jiménez (2009) and Renard & Deck (2015), this work
introduces a technique to increase the temporal resolution of turbulent flow measurements with-
out any prior knowledge of the flow physics.

2. Methodology

The improved advection-based flow reconstruction model described in Vocke et al. (2023) was de-
veloped to overcome the limitations outlined by previous methods outlined in Scarano & Moore
(2012) and Vamsi Krishna et al. (2020). Our own temporal up-sampling method was first devel-
oped using a benchmark data set of the direct numerical simulation (DNS) of a turbulent plane
jet with Re = 10, 000 and a non-dimensional sampling frequency of fs = 24.86 (refer to Vocke et
al. (2023) for further details). The concepts outlined in Vocke et al. (2023) are based on a one di-
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Figure 1. Comparison between the DNS (a-b) and PIV (c-d) FOV for the axial Um,1 (a,c) and lateral Um,3 (b,d) mean
velocity components. The thick black boxes featured in (a-b) depict the difference in the FOV for the DNS and PIV

datasets, wherein the DNS data depicts the entire development of the jet, while the PIV data is available only within
the potential core (2 < x/D < 4 and −0.7 < z/D < 0.7).

mensional, uniformly sheared mean flow Um approximation, while this is extended in the present
work through the specification of a two-dimensional convective velocity Uc that may differ from
the local mean flow. Following the work of Álamo & Jiménez (2009) and Renard & Deck (2015), a
least-squares optimization is used to define the convective velocity Uc of all the scales. The method
is additionally validated for use in experimental flow measurements. The PIV measurements com-
prises a turbulent planar jet with Re = 3000 generated from a contraction nozzle at the origin,
sampled with fs = 10 kHz, which corresponds to a non-dimensional frequency fs = 20.4, and
N = 8000. Further details regarding the experimental setup can be found in Neal et al. (2015). In
contrast to the DNS dataset, the PIV recordings cover downstream distances from approximately
2D to 4D. A comparison of the two benchmark datasets comparing the differences in field-of-view
(FOV) is given in Figure 1. The performance of the advection method applied to the PIV mea-
surements is evaluated through a sub-sampling procedure. Based on the original recordings with
the sampling frequency fs, a sub-sampling factor S∗ = fs/fn is used to obtain flow measurements
with an artificially decreased sampling rate fn. With this, the reconstructed velocity fields can be
directly compared with the ground truth data.

Using Rapid Distortion Theory (RDT) in combination with a semi-Lagrangian numerical scheme,
the temporal and spatial fluctuations are related by a convective velocity Uc. Consequently, the
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governing equation reduces to a quasilinear, non-homogeneous material derivative,

Du′

Dt
=

∂u′

∂t
+ (Uc · ∇)u′ = −(u′ · ∇)Uc (1)

where u′ = [u′
1, 0, u

′
3], Uc = [Uc,1, 0, Uc,3], and ∇ = [∂x, 0, ∂z] represent the fluctuating velocities,

convective velocities, and the gradient operator for a two-component flow, respectively. Using the
spatiotemporal information from two successive flow measurements, the backward and forward
evolution of the known data can be estimated. This is achieved using a semi-Lagrangian numerical
technique, which describes the problem as a system of two ordinary differential equations. The
equations are formulated in terms of a "forward" and "backward" estimate for known data with a
temporal spacing of fs = (tb− tf )

−1, resulting in two estimates for the flow at the unknown time tn.
These estimates are combined using a linear temporal weighting scheme wherein the intermediate
results are weighted according to their proximity (in time) to the velocity fields from which they
are derived,

u′(x, tn) =
(
1− n

S∗

)
u′
f (x, tn) +

( n

S∗

)
u′
b(x, tn), (2)

where n ≤ S∗. Such weighting accounts for the decreasing reliability of the estimates as they
progress towards the midpoint time, i.e., n/S∗ = 0.5. Under the quasilinear approximation, the
fluctuations are limited towards interactions with some convective velocity, which is generally
assumed to be equal to the local mean velocity Um (Goldschmidt et al., 1981). While such an as-
sumption is valid for homogeneous flows, it becomes less accurate in regions subject to substantial
mean shear, high turbulence intensity, and significant viscous effects (Hunt & Carruthers, 1990).
This can lead to a distortion of the spatial scales, as well as negatively impact effects of amplitude
modulation (Yang & Howland, 2018). Accordingly, it becomes important to specify a convective
velocity that accurately describes the transport of turbulent fluctuations. Considering the simplest
case of Taylor’s hypothesis, which is generally valid for flows that are streamwise homogeneous
(Taylor, 1938), the optimal streamwise convective velocity is determined through an inverse prob-
lem. This is achieved using a variational method to minimize the residual between the time evolu-
tion of the known flow data and its frozen wave approximation, r = u(x, t)−u(x+∆x, t+∆x/C).
Here, C is the streamwise convective velocity of an ideal frozen wave and requires knowledge of
the streamwise flow gradients ∂x. This leads to 3 three approximations for the convective velocity
depending on which variable is treated implicitly i.e., (x, t(x)) or (x(t), t), in the approximation.
Importantly, all three definitions coincide for a truly frozen wave flow (Renard & Deck, 2015). The
ideal value of C must be chosen such that it minimizes the square of the residual,

R1(x) =
((1/C)∂tu1

′ + ∂xu1
′)2

(∂xu1
′)2

(3)

The values of C can be interpreted as some constant factor that best relates the spatial and tem-
poral derivatives. Minimizing Eqn. (3) over C leads to the following definition for the convective
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velocity,

Uc,1(x) = − (∂tu1
′)2

(∂tu1
′∂xu1

′)
. (4)

This leads to the definition of the convective velocity based on LSM. Notably, the calculation of
Uc,1 requires only the stationary time averages of local signals and their derivatives. For flow
measurements with two or more velocity components, Uc,1 can be similarly estimated from either
component depending on the constraints placed on the parameter C. Additionally, the optimal
streamwise space-time correlation coefficient γ1 is defined as,

γc,1(x) =
√

1−R1(x) =
(∂tu1

′∂xu1
′)√

(∂tu1
′)2

√
(∂xu1

′)2
, (5)

where 0 ≤ γc,1 ≤ 1. For the case of ideal convection, the spatial and temporal derivatives are
perfectly correlated, i.e., γc,1 = 1. A value of γc,1 < 1 provides a measure of the degree of decay
or deformation that occurs as the turbulent structures evolve downstream. Thus, the method
serves to validate when the simplified numerical approach is justified by identifying regions where
Uc,1 ≈ Um,1. The present work obtains the streamwise component of the convective velocity vector
Uc by computing the least-squares solution to the one-dimensional linear advection equation. In
contrast, the lateral component of Uc is simply assumed to be equal to the lateral component of the
mean velocity vector, Uc,3 = Um,3. In principle, a LSM approximation to Uc,3 could be obtained by
consider the contribution of lateral gradients ∂z. The convective velocity can be similarly estimated
from the normalized cross correlation function ρij , which is numerically equivalent to the LSM
method. Defining the normalized correlation of two signals separated by spatial distance ∆x,
where the upstream signal lags by time delay ∆t, results in

ρij(x+∆x, t+∆t) =
u′
i(x, t)u

′
j(x+∆x, t+∆t)√

u′
i(x, t)

2

√
u′
j(x+∆x, t+∆t)2

. (6)

The convective velocity relates the temporal scales to the various spatial scales within a flow, Uc =

∆x/∆t. The parameters for ∆x and ∆t can be defined by maximizing over the time lag ∆t for
a given spatial separation ∆x, yielding f(∆x) = ∆tmax. Physically, this definition of Uc can be
related to the micro-scales in a convective reference frame (xc = x − Uct, t), thus guaranteeing the
slowest spatial decay of the correlation (Renard & Deck, 2015).

3. Results and Discussion

The results are presented and discussed as follows. Firstly, a brief analysis characterizing both
the streamwise convective velocity estimations Uc,1 and the mean velocity fields Um,1 of the DNS
and experimental jet data is presented. The next section provides qualitative and quantitative
assessment of the temporal reconstruction model.
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Figure 2. Comparison between the local (a) convective velocity and (b) mean velocity, as well as (c) the spatial
distribution of the normalized velocity skewness and (d) the optimal correlation coefficient γc for the DNS data.

3.1. Convective velocity estimation

A comparison between the LSM-based convective velocity Uc,1 and streamwise component of the
mean velocity Um,1 is displayed in Figure 2 (a) and (b). Towards the high speed side of the mixing
layer, between 2 < x/D < 4, the convective velocity is generally lower than the mean velocity. In
contrast, near the lateral edges the convective velocity is generally greater than the mean velocity.
Additional lateral differences are noted towards the inlet of the domain, for x/D < 2. In these
regions, the stagnant flow is not yet significantly influenced by the jet, thus, predicting the convec-
tive velocity is both difficult and essentially irrelevant in this region. In the fully developed region
(x/D > 10), Uc,1/Uc,1 ≈ 1 towards the jet centerline, however, the Uc,1 towards lateral edges is con-
sistently faster. The optimal correlation coefficient displayed in Figure 2 (d) is γc,1 ≈ 1 throughout
the majority of the spatial domain, however, the value drops dramatically along the developing
shear layers and towards the region of stagnant flow as previously described. Importantly, the lat-
eral regions where the optimal convective velocity is unity coincide with regions where Uc,1 ̸= Um,1.
Analyzing the spatial and temporal derivatives, γc,1 ≪ 1 when the variation of these derivatives
in one direction (i.e., either space or time) is much faster than the other (observed for x/D > 4), or
alternatively when there is no preferential direction between the spatial and temporal derivatives
(observed for x/D < 4). This is not the case along the jet centreline. Here, the optimal corre-
lation coefficient is approximately unity, yet, significant deviation between Uc,1 and Um,1 can be
observed. This implies that something other than the linear dependency of the spatial and tem-
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Figure 3. (a) Series of cross correlation measurements of the DNS jet for the u-component of velocity with the
reference point xi = 5.0. Each curve represents a different downstream separation. (b) Same series of cross

correlation curves in a convective frame (xc = x−Uct, t) (c) Corresponding space-time correlation of the DNS jet. The
solid black line corresponds to the limit for the significance of correlation, σN .

poral derivatives is causing the deviation. One possible explanation derives from the skewness of
the velocity fluctuations, displayed in Figure 2 (c). Skewness is a third-order moment that indi-
cates the degree of asymmetry within a probability distribution. The LSM and correlation-based
methods consider the square of the signal, thus, are strongly influenced by large amplitude fluctu-
ations. Physically, skewness is an important parameter in understanding turbulent kinetic energy,
wherein the gradient of u′

ju
′
ju

′
i represents the rate at which Reynolds stresses are transported by

the turbulent fluctuations. Observing Figure 2 (c), the skewness is positive along the developing
shear layer, with distinct negative regions outlining the potential core. Such behaviour is char-
acteristic of multi-scale entrainment phenomena wherein the ambient fluid is engulfed towards
the jet centreline due to shear across a turbulent/non-turbulent interface. Generally, the skewness
decays towards zero as the flow becomes fully developed. Comparing Figure 2 (a), (b), and (c),
there seems to be a qualitative agreement between regions of non-zero skewness to regions where
where Uc,1 ̸= Um,1.

The axial space-time correlations of the DNS data computed with respect to the reference point
x/D = (5.0, 0) are displayed in Figure 3 (a)-(c). As mentioned in Section 2, the convective velocity
Uc,1 can be determined from the time delay which maximizes the correlation coefficient for a given
spatial separation, or alternatively by considering the spatial separation that maximizes the corre-
lation for a given time delay. A broadband estimate of Uc,1 is obtained by considering the envelope
of significant correlations as estimated from white noise. For correlations based on N samples,
the variability observed across multiple white noise correlations forms the basis for the statistical
significance threshold, σN = 0.2 for the present dataset. As with the LSM method, these defini-
tions should coincide if there is a significant linear dependence between space and time. Thus,
Taylor’s hypothesis can be applied in regions where ∂t ρ11 = ∂x ρ11. The local maximum values of
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Figure 4. Space-time correlation of the PIV jet for the u-component of velocity along the centreline at x/D = 2.0. The
thin dashed and dotted lines represent the maximum of the correlations with respect to ∆t and ∆x respectively. The
vertical and horizontal black dashed lines represent the time lag and spatial separation that correspond to the limit

for the significance of correlation, σN .

the correlations based on a constant time delay (thin dashed line) and a constant spatial separation
(thin dotted line) are displayed in Figure 3 (c). For ∆t > 0.5 we observe a deviation in slope of the
maximum correlation. This is to be expected within the developmental zone, where one is likely to
find significant flow decorrelation induced by the combined effects of convection, mean flow shear,
and the random motion associated with the interactions between various flow scales. Considering
the PIV data, Figure 4 displays the axial space-time correlations computed using a reference point
x/D = (2.0, 0) (i.e., within the potential core). The local peak values indicate that ∆x/∆t remains
approximately constant within the significance region bounded by σN , thus, Taylor’s hypothesis
is a valid simplification for this region of the flow.

3.2. Evaluation of the temporal reconstruction model

The performance of the temporal reconstruction model is evaluated through a direct comparison
of the power spectral density Φ11/u′

1u
′
1 as a function of the normalized frequency fD/U0 for the

axial velocity u to the reference PIV data in Figure 5(c). As Uc,1 ≈ Um,1 for the reference PIV data,
the spectra computed with respect to Um,1 is not shown. The performance of the model applied
to the reference DNS data (Vocke et al., 2023) is similarly displayed for calculations based on Uc,1

and the two-dimensional Um,1 (refer to Figure 5 (a) and (b), respectively). In general, advection
based on Um,1 fails to capture the fundamental frequency of the jet instability due to the relatively
large velocity gradients surrounding the jet core for x/D < 4. For both the flow cases based on
Uc,1 (Figure 5(a) and (c)), a slight increase in the energy content is observed for frequencies below
the Nyquist frequency fN of the under sampled data. The most notable differences appear in the
higher frequency range of the spectra, where the reconstructed PIV data demonstrates a stronger
capability to capture the spectral end behavior compared to the reconstructed DNS data. It is pos-
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Figure 5. Comparison of the raw, under sampled, and reconstructed (a) DNS spectrum computed with the
LSM-based Uc (b) DNS spectrum computed with the two-dimensional Um, and (c) PIV spectrum computed with Uc

for the u-component of the velocity field. The green dashed lines represent the Nyquist frequency fN of the
under-sampled data set. The spectra are extracted along the jet centreline at x/D = 3.0 and presented in a log-log

scale.

sible that some deviation stems from the difference in Reynolds numbers for the two data sets,
with ReDNS = 10, 000 and RePIV = 3000. Thus, the turbulence of the PIV data set is still in its
early stages of development at this location in the domain. It is important to note however that
the range of resolvable frequencies for the PIV measurements is limited by the available spatial
resolution. The maximum resolvable frequency is often estimated by considering the ratio of some
bulk convective velocity and smallest resolved length scale, fmax = U0/δ (Schneiders et al., 2018).
If δ is assumed from the interrogation window size, this results in fmaxD/U0 ≈ 7, giving reason-
able evidence that the majority of the PIV spectrum has been resolved. This is further verified by
considering the comparison of the PIV recordings as outlined in Neal et al. (2015), which were ob-
tained using a high-dynamic range (HDR) system, to the equivalent hot-wire (HW) measurements
in the fully-develop turbulence region. Neal et al. (2015) showed that the PIV-HDR measurements
exhibit slight deviation from the HW measurements in the form of high-frequency roll-up. Re-
call that the FOV for the PIV data is smaller than that of the original DNS time series. To ensure
a proper comparison of the results, the FOV for the DNS data was truncated to cover the same
downstream distance as the PIV measurements before applying the upsampling algorithm.

To quantify the error bounds of our method we use two metrics, the time-varying reconstructed
errors, ϵi(t∗), and the spectral reconstruction errors, Eii(x, f). The time-varying reconstructed errors
displayed in Figure 6 are defined with the following equation,

ϵi(t
∗) =

100

U0

[
1

Nx

1

Nz

Nx∑
a=1

Nz∑
b=1

[ũi
′(xa, zb, t

∗)− u′
i(xa, zb, t

∗)]2
]1/2

(7)

where u′
i and ũi

′ represent the reference and reconstructed velocity data, respectively. In general,
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Figure 6. Temporal reconstruction error for the reference PIV data as a percent error according to Eqn. 7 for the (a)
u-component and (b) w-component of the flow. The error uncertainty is displayed with the transparent bands

indicating one standard deviation from the mean.

there exists a slightly greater uncertainty throughout the majority of the up-sampling period for
the case of S∗ = 150, likely due to the limited number of samples (54) used to compute the statistics.
A plateau of the errors occurs for both velocity components towards the midpoint time n/S∗ = 0.5,
which is expected due to the linear temporal weighting scheme. The plateau for the u′

1 velocity
component develops much faster for the case with S∗ = 150 compared with the less extreme
cases, indicating S∗ = 150 corresponds to the upper limit for what can be recovered from the
experimental dataset. Additionally, the plateau of the error occurs faster for the lateral velocity
component u′

3. This could be related to the use of Um,3 instead of an optimized lateral convective
velocity Uc,3.

The spectral reconstruction error in the form of a pre-multiplied energy difference is used to asses
the model’s ability to recover spatiotemporal information, and is calculated according,

Eii(x, f) = 100
fU0

D

Φ̃ii(x, f)− Φii(x, f)

⟨u′
i(x, t) u

′
i(x, t)⟩

, (8)

where Φ̃ii(x, f) and Φii(x, f) represent the up-sampled and reference spectra, respectively. The
spectral reconstruction errors extracted along the jet centreline for the cases S∗ = 50 and 150 are
displayed for the u′ and w′ components of velocity in Figure 7. Similar trends are observed for both
sub-sampling factors and velocity components, with a distinct energy gain marking the boundary
along the Nyquist frequency of the under sampled data set, and a consistent small energy loss
moving towards the high frequencies. The numerical scheme uses the known forward and back-
ward flow measurements as the initial conditions for each estimate of the velocity field at tn (i.e.,
the flow at tn is never used as the initial conditions for the time tn+1). It is possible that the energy
gain indicates the limitations of the proposed time-marching scheme, as the the velocity fields at
times tf and tb leave their imprint on each successive estimate.
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Figure 7. Planar distribution of the spectral reconstruction error based on the reference PIV data for the (a,b)
u-component and (c,d) w-component of velocity along the jet centreline, for the sub-sampling factor (a,c) S∗ = 50 and

(b,d) S∗ = 150. The black dashed lines represent the Nyquist frequency fN of the under-sampled data set.

4. Conclusions

This study extends upon the concepts outlined in Vocke et al. (2023) to assess what spatiotem-
poral data can be recovered from an experimental PIV data set. Using both a benchmark DNS
and PIV dataset of a turbulent planar jet, the convective velocity of all scales is estimated using
an LSM-based techniques. An important feature of this technique is the ability to asses the linear
dependency between space and time – thus providing a metric to asses the validity of Taylor’s
Hypothesis through an optimal correlation coefficient. While this metric is reliable in the fully-
developed region of the flow, it fails to predict deviations between Um and Uc towards the potential
core and developmental region. Instead, the skewness of the fluctuations is proposed as a possi-
ble indicator of such deviations. This convective velocity estimation is used in combination with
a semi-Lagrangian numerical technique to recover spectral information well-beyond the Nyquist
limit. Importantly, the method requires no a priori knowledge of the flow physics and is well
suited towards non-equilibrium flows with significant developmental regions. The evaluation of
the model applied to experimental turbulent planar jet measurements at Re = 3000 highlights
its potential to capture important trends in the spectrum, especially in the inertial sub-range to-
wards viscous dissipation, demonstrating promise for turbulent flow analysis. The quantitative
performance of the flow reconstruction is investigated according the time-varying and spectral
reconstruction errors, where the reported errors were less than 15% and 5%, respectively. These
preliminary findings offer a valuable framework for future investigations which aim to refine the
model’s accuracy, particularly in regions where the simplified assumptions of Taylor’s hypothesis
and RDT require further refinement. Future work includes application of the model to different
flow configurations and Reynolds numbers to further verify the method’s generality.
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